534
S. H. Kim et al. / Tetrahedron Letters 55 (2014) 531–534
CDCl3) d 7.97; ESIMS m/z 498 [M+H]+. Anal. Calcd for C28H36NO5P: C, 67.59; H,
7.29; N, 2.82. Found: C, 67.81; H, 7.46; N, 2.86.
Compound 2k: White solid, mp 139–141 °C; IR (KBr) 3412, 1727, 1639, 1241,
1019 cmꢀ1 1H NMR (300 MHz, CDCl3) d 1.39 (t, J = 7.2 Hz, 6H), 3.70 (s, 3H),
;
4.19–4.36 (m, 4H), 7.01–7.10 (m, 7H), 7.24 (t, J = 8.7 Hz, 1H), 7.38 (d, J = 7.8 Hz,
2H), 10.30 (br s, 1H); 13C NMR (75 MHz, CDCl3) d 16.29 (d, JPC = 6.9 Hz), 51.44,
63.36 (d, JPC = 5.7 Hz), 121.54, 123.22, (d, JPC = 224.9 Hz), 127.22, 127.31,
127.54, 128.97, 130.66, 131.20 (d, JPC = 10.7 Hz), 131.91, 132.44, 133.12 (d,
JPC = 10.9 Hz), 136.42, 163.64, 187.24; ESIMS m/z 442 [M+H]+. Anal. Calcd for
C
23H24NO6P: C, 62.58; H, 5.48; N, 3.17. Found: C, 62.59; H, 5.71; N, 3.08.
Compound 2r: White solid, mp 66–68 °C; IR (KBr) 1487, 1250, 1022 cmꢀ1
;
1H
NMR (300 MHz, CDCl3) d 1.17 (t, J = 7.2 Hz, 6H), 3.92–4.14 (m, 4H), 7.26–7.50
(m, 7H), 7.56–7.69 (m, 4H); 13C NMR (75 MHz, CDCl3) d 15.97 (d, JPC = 7.4 Hz),
62.57 (d, JPC = 5.2 Hz), 121.64 (d, JPC = 207.2 Hz), 126.11, 127.27 (d,
JPC = 16.7 Hz), 128.05, 128.08, 128.66, 128.91 (d, JPC = 1.2 Hz), 129.06, 133.05
(d, JPC = 1.7 Hz), 135.75 (d, JPC = 2.9 Hz), 150.41 (d, JPC = 7.4 Hz), 150.60 (d,
JPC = 10.4 Hz); ESIMS m/z 373 [M+H]+. Anal. Calcd for C20H21O3PS: C, 64.50; H,
5.68. Found: C, 64.76; H, 5.80.
9. Typical procedure for the synthesis of 2a. A solution of 1a (148 mg, 0.5 mmol),
diethyl phosphite (208 mg, 1.5 mmol), AgNO3 (17 mg, 0.1 mmol), and K2S2O8
(406 mg, 1.5 mmol) in DMF/H2O (8:1, 6.0 mL) was heated to 50 °C for 2 h. After
the usual aqueous extractive workup and column chromatographic purification
process (hexanes/EtOAc, 1:1) compound 2a was obtained as a white solid,
162 mg (75%) along with lactam 3a, 23 mg (14%). Other compounds were
synthesized similarly, and the selected spectroscopic data of 2a, 2c, 2d, 2g, 2j,
2k, and 2r are as follows.
Compound 2a: White solid, mp 116–118 °C; IR (KBr) 1496, 1257, 1025 cmꢀ1 1H
;
NMR (300 MHz, CDCl3) d 0.79 (t, J = 7.2 Hz, 6H), 3.36–3.39 (m, 2H), 3.59–3.72
(m, 2H), 6.38 (d, JPH = 4.8 Hz, 1H), 7.00–7.34 (m, 13H), 7.51–7.55 (m, 2H); 13C
NMR (75 MHz, CDCl3) d 15.63 (d, JPC = 7.4 Hz), 61.72 (d, JPC = 5.7 Hz), 112.19 (d,
JPC = 13.7 Hz), 118.29 (d, JPC = 226.7 Hz), 126.91, 127.21, 127.65, 127.97, 128.02,
128.42, 128.87(2C), 129.74, 131.97 (d, JPC = 1.7 Hz), 135.93, 136.88 (d,
JPC = 16.69 Hz), 139.45, 140.13 (d, JPC = 10.9 Hz); 31P NMR (121 MHz, CDCl3) d
9.14; ESIMS m/z 432 [M+H]+. Anal. Calcd for C26H26NO3P: C, 72.38; H, 6.07; N,
3.25. Found: C, 72.51; H, 6.18; N, 3.09.
Compound 2c: Colorless oil; IR (film) 1497, 1258, 1029 cmꢀ1
;
1H NMR
(300 MHz, CDCl3) d 0.93 (d, J = 6.0 Hz, 6H), 1.12 (d, J = 6.0 Hz, 6H), 4.31–4.52
(m, 2H), 6.47 (d, JPH = 4.5 Hz, 1H), 7.08–7.41 (m, 13H), 7.59–7.63 (m, 2H); 13C
NMR (75 MHz, CDCl3) d 23.24 (d, JPC = 5.2 Hz), 23.82 (d, JPC = 4.1 Hz), 70.53 (d,
JPC = 5.7 Hz), 112.22 (d, JPC = 13.8 Hz), 119.52 (d, JPC = 228.9 Hz), 126.73, 127.08,
127.47, 127.90, 127.98, 128.13, 128.89, 129.25, 129.95, 132.13 (d, JPC = 1.7 Hz),
136.27, 136.39 (d, JPC = 16.6 Hz), 139.53, 139.95 (d, JPC = 10.9 Hz); ESIMS m/z
460 [M+H]+. Anal. Calcd for C28H30NO3P: C, 73.19; H, 6.58; N, 3.05. Found: C,
73.02; H, 6.77; N, 2.90.
13. The lactams 3a and 3d are known,12c and the selected spectroscopic data of 3e
and 3h are as follows.
Compound 3e: White solid, mp 194–196 °C; IR (KBr) 3355, 1681, 1492,
1450 cmꢀ1 1H NMR (300 MHz, CDCl3 + DMSO-d6) d 2.59–2.69 (m, 1H), 2.78–
;
2.93 (m, 1H), 3.09–3.20 (m, 1H), 3.53–3.63 (m, 1H), 5.22 (s, 1H), 6.98 (s, 1H),
7.04–7.43 (m, 13H), 7.84–7.88 (m, 2H); 13C NMR (75 MHz, CDCl3 + DMSO-d6) d
34.59, 41.26, 89.65, 125.94, 125.98, 127.27, 128.17, 128.23, 128.30, 128.43,
128.61, 128.75, 130.76, 133.77, 137.68, 139.28, 143.21, 169.13; ESIMS m/z 356
[M+H]+. Anal. Calcd for C24H21NO2: C, 81.10; H, 5.96; N, 3.94. Found: C, 81.21;
H, 6.03; N, 3.75.
Compound 2d: Colorless oil; IR (film) 1484, 1242, 1024 cmꢀ1
;
1H NMR
(300 MHz, CDCl3) d 0.81 (t, J = 7.2 Hz, 6H), 3.41–3.53 (m, 2H), 3.66–3.79 (m,
2H), 5.62 (s, 2H), 6.30 (d, JPH = 4.5 Hz, 1H), 6.84–6.88 (m, 2H), 7.07–7.31 (m,
11H), 7.42–7.47 (m, 2H); 13C NMR (75 MHz, CDCl3) d 15.64 (d, JPC = 7.5 Hz),
49.69, 61.64 (d, JPC = 5.2 Hz), 112.00 (d, JPC = 13.1 Hz), 115.51 (d, JPC = 224.9 Hz),
126.17, 126.75, 126.81, 127.54, 128.14, 128.20, 128.43, 129.46, 129.63, 132.13,
136.06, 136.79 (d, JPC = 16.0 Hz), 139.53, 141.43 (d, JPC = 12.5 Hz); ESIMS m/z
446 [M+H]+. Anal. Calcd for C27H28NO3P: C, 72.79; H, 6.34; N, 3.14. Found: C,
72.71; H, 6.58; N, 3.02.
Compound 3h: White solid, mp 70–72 °C; IR (KBr) 3355, 1682, 1513,
1449 cmꢀ1 1H NMR (300 MHz, CDCl3) d 3.61 (s, 3H), 3.88 (br s, 1H), 6.59 (d,
;
J = 9.0 Hz, 2H), 6.90 (s, 1H), 7.12–7.33 (m, 10H), 7.75–7.78 (m, 2H); 13C NMR
(75 MHz, CDCl3) d 55.16, 91.09, 113.80, 126.08, 126.85, 127.53, 128.37, 128.43,
128.46, 128.49, 129.17, 130.34, 133.90, 137.08, 142.94, 157.51, 168.82; ESIMS
m/z 358 [M+H]+. Anal. Calcd for C23H19NO3: C, 77.29; H, 5.36; N, 3.92. Found: C,
77.42; H, 5.29; N, 3.68.
Compound 2g: Colorless oil; IR (film) 1509, 1242, 1024 cmꢀ1
;
1H NMR
(300 MHz, CDCl3) d 0.91 (t, J = 7.2 Hz, 6H), 2.17 (s, 3H), 3.56–3.67 (m, 2H),
3.76–3.87 (m, 2H), 5.62 (s, 2H), 6.10 (d, JPH = 4.2 Hz, 1H), 6.98–7.01 (m, 2H),
7.19–7.49 (m, 8H); 13C NMR (75 MHz, CDCl3) d 12.40 (d, JPC = 1.7 Hz), 15.66 (d,
JPC = 7.4 Hz), 49.08, 61.52 (d, JPC = 5.2 Hz), 110.85 (d, JPC = 13.8 Hz), 114.04 (d,
JPC = 224.9 Hz), 125.93, 126.60, 126.86, 127.43, 128.43, 129.62, 136.22 (d,
JPC = 12.0 Hz), 136.27 (d, JPC = 17.2 Hz), 136.33, 138.61; 31P NMR (121 MHz,
CDCl3) d 10.59; ESIMS m/z 384 [M+H]+. Anal. Calcd for C22H26NO3P: C, 68.92; H,
6.83; N, 3.65. Found: C, 69.06; H, 6.68; N, 3.49.
14. The lactam 3a was formed in 42% yield in the presence of K2S2O8 (3.0 equiv) in
DMF/H2O (8:1) at 50 °C for 10 h without the aid of AgNO3. The result stated
that the use of AgNO3 accelerates the reaction rate when we compared the
yield of 3a (83%) and reaction time (2 h) in the presence of AgNO3. In addition,
the synthesis of alkyl-substituted lactams 3g and 3j failed. The formations of
3g and 3j were observed on TLC in low yields at the right position; however,
the separation failed due to the presence of some side products. Further studies
on the reaction mechanism including the involvement of air and/or water for
the production of lactam are under progress.
Compound 2j: Colorless oil; IR (film) 1731, 1260, 1023 cmꢀ1
;
1H NMR
(300 MHz, CDCl3) 0.75 (t, J = 6.6 Hz, 3H), 1.11–1.13 (m, 4H), 1.16 (t,
d
J = 7.2 Hz, 6H), 1.28–1.41 (m, 2H), 2.43–2.49 (m, 2H), 3.67 (s, 3H), 3.83–4.08
(m, 4H), 5.61 (s, 2H), 6.95–6.98 (m, 2H), 7.20–7.38 (m, 8H); 13C NMR (75 MHz,
CDCl3) d 13.75, 15.97 (d, JPC = 6.8 Hz), 21.97, 24.58, 29.60, 31.42, 49.22, 51.87,
62.38 (d, JPC = 5.2 Hz), 117.20 (d, JPC = 223.8 Hz), 123.21 (d, JPC = 12.1 Hz),
125.78, 126.68, 126.73 (d, JPC = 15.5 Hz), 127.14, 128.05, 128.52, 129.52, 134.34
(d, JPC = 1.1 Hz), 138.04 (d, JPC = 10.9 Hz), 138.12, 166.64; 31P NMR (121 MHz,