Organic Letters
Letter
K.; Yagyu, T.; Yoshioka, Y.; Fujiwara, T.; Kanamoto, A.; Okamoto, T.;
Ojika, M. Tetrahedron 2013, 69, 101−106.
(2) (a) Watanabe, K.; Tsuda, Y.; Yamane, Y.; Takahashi, H.; Iguchi,
K.; Naoki, H.; Fujita, T.; Van Soest, R. W. M. Tetrahedron Lett. 2000,
41, 9271−9276. (b) Kirkham, J. E. D.; Courtney, T. D. L.; Lee, V.;
Baldwin, J. E. Tetrahedron 2005, 61, 7219−7932.
and only product 10 could be detected by TLC. From the ATH
reaction of 10, enantiomerically enriched (S)-panaxjapyne A 1
was isolated in 85% yield and 96% ee (Scheme 2), as
determined by analysis of racemic panaxjapyne A and chiral
HPLC of the panaxjapyne A 4-methoxybenzonate.
(3) (a) Chan, H. H.; Sun, H. D.; Reddy, M. V. B.; Wu, T. S.
Phytochemistry 2010, 7, 1360−1364. (b) Thakur, P.; Kumaraswamy,
B.; Reddy, G. R.; Bandichhor, R.; K. Mukkanti, K. Tetrahedron Lett.
2012, 53, 3703−3705.
Scheme 2. Completion of the Synthesis of (S)-Panaxjapyne
A 1
(4) Reber, S.; Knopfel, T. F.; Carreira, E. M. Tetrahedron 2003, 59,
̈
6813−6817.
(5) Graham, E. R.; Tykwinski, R. R. J. Org. Chem. 2011, 76, 6574−
6583.
(6) Trost, B. M.; Chan, V. S.; Yamamoto, D. J. Am. Chem. Soc. 2010,
132, 5186−5192.
(7) Zheng, B.; Li, S.-N.; Mao, J.-Y.; Wang, B.; Bian, Q.-H.; Liu, S.-Z.;
Zhong, J.-C.; Guo, H.-C.; Wang, M. Chem.Eur. J. 2012, 18, 9208−
9211.
(8) Trost, B. M.; Quintard, A. Angew. Chem., Int. Ed. 2012, 51, 6704−
6708.
(9) Turlington, M.; Du, Y.; Ostrum, S. G.; Santosh, V.; Wren, K.; Lin,
T.; Sabat, M.; Pu, L. J. Am. Chem. Soc. 2011, 133, 11780−11794.
(10) (a) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem.
Rev. 2004, 248, 2201−2237. (b) Gladiali, S.; Alberrico, E. Chem. Soc.
Rev. 2006, 35, 226−236. (c) Ikariya, T.; Murata, K.; Noyori, R. Org.
Biomol. Chem. 2006, 4, 393−406. (d) Ikariya, T.; Blacker, A. J. Acc.
Chem. Res. 2007, 40, 1300−1308. (e) Wang, C.; Wu, X.; Xiao, J.
Chem.Asian J. 2008, 3, 1750−1770. (f) Hashiguchi, S.; Fujii, A.;
Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117,
7562−7563. (g) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.;
Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521−2522. (h) Haack, K. J.;
Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed.
1997, 36, 285−288. (i) Handgraaf, J.-W.; Meijer, E. J. J. Am. Chem. Soc.
2007, 129, 3099−3103. (j) Soni, R.; Cheung, F. K.; Clarkson, G. C.;
Martins, J. E. D.; Graham, M. A.; Wills, M. Org. Biomol. Chem. 2011, 9,
3290−3294. (k) Steward, K. M.; Gentry, E. C.; Johnson, J. S. J. Am.
Chem. Soc. 2012, 134, 7329−7332. (l) Cheung, F. K.; Lin, C.; Minissi,
The experimental data for synthetic panaxjapyne A, including
1H NMR, 13C NMR, optical rotation and Mosher ester, were
consistent with that reported for the natural material (see
Supporting Information). The absolute configuration of 1 was
1
assigned as (S) by comparing the H NMR spectra of the
Mosher ester derivatives of our racemic and enantiomerically
enriched panaxjapyne A samples (see Supporting Informa-
tion).19
In summary, we have demonstrated, for the first time, that
diynones are suitable substrates for asymmetric transfer
hydrogenation in high ee and conversion. The value of this
methodology has been demonstrated in its application to the
total synthesis of panaxjapyne A.
́
F.; Lorente Criville, A.; Graham, M. A.; Fox, D. J.; Wills, M. Org. Lett.
2007, 9, 4659−4662. (m) Soni, R.; Collinson, J.-M.; Clarkson, G. J.;
Wills, M. Org. Lett. 2011, 13, 4304−4307. (n) Hems, W. P.; Jackson,
W. P.; Nightingale, P.; Bryant, R. Org. Process Res. Dev. 2012, 16, 461−
463.
(11) (a) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1997, 119, 8738−8739. (b) Druais, V.; Meyer, C.; Cossy, J.
Org. Lett. 2012, 14, 516−519. (c) Dias, L. C.; Ferreira, M. A. B. J. Org.
Chem. 2012, 77, 4046−4062. (d) Gallon, J.; Esteban, J.; Bouzbouz, S.;
Campbell, M.; Reymond, S.; Cossy, J. Chem.Eur. J. 2012, 18,
11788−11797. (e) Mi, X.; Wang, Y.; Zhu, L.; Wang, R.; Hong, R.
Synthesis 2012, 44, 3432−3440. (f) Arai, N.; Satoh, H.; Utsumi, N.;
Murata, K.; Tsutsumi, K.; Ohkuma, T. Org. Lett. 2013, 15, 3030−3033.
(g) Raghavan, S.; Vinoth Kumar, V. Org. Biomol. Chem. 2013, 11,
2847−2858. (h) Kesava Reddy, N.; Chandrasekhar, S. J. Org. Chem.
2013, 78, 3355−3360. (i) Trost, B. M.; Bartlett, M. J. Org. Lett. 2012,
14, 1322−1325.
(12) (a) Chodkiewicz, W.; Cadiot, P. C. R. Hebd. Seances Acad. Sci.
1955, 241, 1055−1057. (b) J. P. Marino, J. P.; Nguyen, H. N. J. Org.
Chem. 2002, 67, 6841−6844. (c) García-Domínguez, P.; Alvarez, R.;
De Lera, A. R. Eur. J. Org. Chem. 2012, 4762−4782. (d) Gung, B. W.;
Gibeau, C.; Jones, A. Tetrahedron: Asymmetry 2004, 15, 3973−3977.
(e) Sabitha, G.; Reddy, C. S.; Yadav, J. S. Tetrahedron Lett. 2006, 47,
4513−4516. (f) Gung, B. W.; Craft, D. T.; Truelove, J. Tetrahedron:
Asymmetry 2007, 18, 1284−1287. (g) Domnin, I. N.; Remizova, L. A.
Russ. J. Org. Chem. 2009, 45, 1123−1127. (h) Bonney, K. J.; Braddock,
D. C. J. Org. Chem. 2012, 77, 9574−9584.
ASSOCIATED CONTENT
* Supporting Information
■
S
Full experimental details and analytical data including NMR
spectra and chiral HPLC analyses. This material is available free
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank Warwick University for partial support of Y.F. and
Johnson Matthey (Cambridge) for a generous gift of catalyst 3.
■
(13) Aiguade, J.; Hao, J.; Forsyth, C. J. Org. Lett. 2001, 3, 979−982.
(14) Birman, V. B.; Guo, L. Org. Lett. 2006, 8, 4859−4861.
(15) Caruso, T.; Spinella, A. Tetrahedron: Asymmetry 2002, 13,
2071−2073.
REFERENCES
■
(1) (a) Gung, B. W. C. R. Chim. 2009, 12, 489−505. (b) Yamaguchi,
M.; Park, H.; Hirama, M. Chem. Lett. 1997, 535−536. (c) Horikawa,
C
dx.doi.org/10.1021/ol4032123 | Org. Lett. XXXX, XXX, XXX−XXX