Organic Letters
Letter
Author Contributions
alternatives would require expensive starting materials such as
1-cycloheptenyl bromide 14 or boron pinacol ester 15. Even
though 13 was obtained in 29% yield, only inexpensive
cycloheptanone and tosylhydrazine were needed as substrates
in this multistep one-pot sequence.
†A.M. and A.N.B. contributed equally.
Notes
The authors declare no competing financial interest.
We have shown that different transition-metal-free paths can
be taken to synthesize arylated olefins without the need of
purchasing expensive boron pinacol esters. In Scheme 8, we
ACKNOWLEDGMENTS
■
D.D., A. M., and A.N.B. are grateful to the Fonds der
Chemischen Industrie, the Deutsche Forschungsgemeinschaft
(DFG grant: DI 2227/2-1), the SFB749, and the Ludwig-
Maximilians University for PhD funding and financial support.
Scheme 8. Comparison of Different Methods to Access 9h
̈
Dr. Christoph Samann (Bayer Crop Science, Dormagen) is
kindly acknowledged for fruitful discussions.
REFERENCES
■
(1) (a) Hurd, D. T. J. Am. Chem. Soc. 1948, 70, 2053−2055.
(b) Brown, H. C.; Subba Rao, B. C. J. Am. Chem. Soc. 1956, 78,
2582−2588. (c) Brown, H. C.; Subba Rao, B. C. J. Am. Chem. Soc.
1956, 78, 5694−5695. (d) Brown, H. C.; Subba Rao, B. C. J. Am.
Chem. Soc. 1959, 81, 6423−6428. (e) Brown, H. C. Tetrahedron 1961,
12, 117−138. (f) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem.
Soc. 1992, 114, 6671−6679.
(2) (a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979,
20, 3437−3440. (b) Suzuki, A. Acc. Chem. Res. 1982, 15, 178−184.
(c) Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43,
412−443.
summarize and compare some of these methods, having an in
situ magnesium insertion/trapping reaction as the first step.
Employing classical conditions described in Scheme 4 afforded
9h in 72% yield.
(3) (a) Matteson, D. S.; Mah, R. H. W. J. Am. Chem. Soc. 1963, 85,
2599−2603. (b) Matteson, D. S.; Ray, R. J. Am. Chem. Soc. 1980, 102,
7590−7591. (c) Matteson, D. S.; Ray, R.; Rocks, R. R.; Tsai, D. J. S.
Organometallics 1983, 2, 1536−1543. (d) Matteson, D. S.; Sadhu, K.
M. J. Am. Chem. Soc. 1983, 105, 2077−2078. (e) Matteson, D. S. Acc.
Chem. Res. 1988, 21, 294−300. (f) Matteson, D. S. Chem. Rev. 1989,
89, 1535−1551. (g) Matteson, D. S. Tetrahedron 1989, 45, 1859−
1885. (h) Matteson, D. S. Pure Appl. Chem. 1991, 63, 339−344.
(i) Matteson, D. S. Tetrahedron 1998, 54, 10555−10607.
(4) (a) Fang, G. Y.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2007, 46,
359−362. (b) Stymiest, J. L.; Dutheuil, G.; Mahmood, A.; Aggarwal,
V. K. Angew. Chem., Int. Ed. 2007, 46, 7491−7494. (c) Burns, M.;
Essafi, S.; Bame, J. R.; Bull, S. P.; Webster, M. P.; Balieu, S.; Dale, J.
W.; Butts, C. P.; Harvey, J. N.; Aggarwal, V. K. Nature 2014, 513,
183−188. (d) Roesner, S.; Blair, D. J.; Aggarwal, V. K. Chem. Sci.
2015, 6, 3718−3723. (e) Thomas, S. P.; French, R. M.; Jheengut, V.;
Aggarwal, V. K. Chem. Rec. 2009, 9, 24−39.
(5) (a) Zweifel, G.; Arzoumanian, H.; Whitney, C. C. J. Am. Chem.
Soc. 1967, 89, 3652−3653. (b) Zweifel, G.; Polston, N. L.; Whitney,
C. C. J. Am. Chem. Soc. 1968, 90, 6243−6245. (c) Negishi, E.; Lew,
G.; Yoshida, T. J. Chem. Soc., Chem. Commun. 1973, 22, 874−875.
(d) Evans, D. A.; Crawford, T. C.; Thomas, R. C.; Walker, J. A. J. Org.
Chem. 1976, 41, 3947−3953. (e) Brown, H. C.; Bhat, N. G. J. Org.
Chem. 1988, 53, 6009−6013. (f) Armstrong, R. J.; Aggarwal, V. K.
Synthesis 2017, 49, 3323−3336. (g) Armstrong, R. J.; Niwetmarin, W.;
Aggarwal, V. K. Org. Lett. 2017, 19, 2762−2765.
Importantly, when performing the ligand exchange in the
second step on the intermediate organoboronate, magnesium
butoxide (n-BuOMgBr) is released in the reaction mixture, and
we hypothesized that this alcoholate could be used as the
required base in the elimination step. Avoiding the addition of
sodium methanolate confirmed this hypothesis, as 9h was
isolated in 61% yield. Alternatively, the first insertion step
could be performed on the alkenyl part, preventing the use of
an excessive amount of the corresponding Grignard reagent in
the second step. Similar yields were obtained using either
arylmagnesium or aryllithium species (40−45%).
In conclusion, we have demonstrated that a stoichiometri-
cally controlled generation of hetero bisorganoborinates could
be turned into a powerful tool for C−C bond formation. By
unlocking new and complementary paths toward diversely
substituted boron species, a wide array of functionalized olefins
were developed, employing inexpensive substrates and reagents
in combination with catalyst-free Zweifel conditions.
ASSOCIATED CONTENT
* Supporting Information
■
S
(6) (a) Eisold, M.; Didier, D. Angew. Chem., Int. Ed. 2015, 54,
15884−15887. (b) Eisold, M.; Kiefl, G. M.; Didier, D. Org. Lett. 2016,
18, 3022−3025. (c) Eisold, M.; Baumann, A. N.; Kiefl, G. M.;
Emmerling, S. T.; Didier, D. Chem. - Eur. J. 2017, 23, 1634−1644.
(d) Eisold, M.; Didier, D. Org. Lett. 2017, 19, 4046−4049.
(7) Baumann, A. N.; Music, A.; Karaghiosoff, K.; Didier, D. Chem.
Commun. 2016, 52, 2529−2532.
The Supporting Information is available free of charge on the
Experimental procedures and characterization (IR,
HRMS, and 1H and 13C NMR data) for all new
(8) Baumann, A. N.; Eisold, M.; Music, A.; Didier, D. Synthesis 2018,
50, 3149−3160.
AUTHOR INFORMATION
■
(9) Music, A.; Hoarau, C.; Hilgert, N.; Zischka, F.; Didier, D. Angew.
Chem., Int. Ed. 2019, 58, 1188−1192.
(10) For recent applications of Zweifel’s olefination in synthesis, see:
(a) Blair, D. J.; Fletcher, C. J.; Wheelhouse, K. M. P.; Aggarwal, V. K.
Angew. Chem., Int. Ed. 2014, 53, 5552−5555. (b) Blaisdell, T. P.;
Morken, J. P. J. Am. Chem. Soc. 2015, 137, 8712−8715. (c) Mercer, J.
A. M.; Cohen, C. M.; Shuken, S. R.; Wagner, A. M.; Smith, M. W.;
Corresponding Author
ORCID
D
Org. Lett. XXXX, XXX, XXX−XXX