Lin et al. Cell Death and Disease
(
2
0
2
0
)
1
1
:
5
5
1
Page 12 of 12
9. Wang L. et al. A novel pyrazoline-based fluorescent probe for detection of
hydrazine in aqueous solution and gas state and its imaging in living cells.
Sens. Actuat. B-Chem. 229, 441–452 (2016).
10. Zheng X. X. et al. Novel pyrazoline-based selective fluorescent probe for the
detection of hydrazine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 138,
247–251 (2015).
11. Zhang R. R. et al. Novel pyrazoline-based fluorescent probe for detecting
thiols and its application in cells. Spectrochim. Acta A Mol. Biomol. Spectrosc.
137, 450–455 (2015).
30. Mulcahy Levy, J. M., Towers, C. G. & Thorburn, A. Targeting autophagy in
cancer. Nat. Rev. Cancer 17, 528–542 (2017).
31. Galluzzi, L., Bravo-San Pedro, J. M., Levine, B., Green, D. R. & Kroemer, G.
Pharmacological modulation of autophagy: therapeutic potential and per-
sisting obstacles. Nat. Rev. Drug Discov. 16, 487–511 (2017).
32. Amaravadi R. K. et al. Principles and current strategies for targeting autophagy
for cancer treatment. Clin. Cancer Res. 17, 654–666 (2011).
33. Kondo, Y. & Kondo, S. Autophagy and cancer therapy. Autophagy 2, 85–90
(2006).
12. Wang S. Q. et al. Novel pyrazoline-based fluorescent probe for detecting
glutathione and its application in cells. Biosens. Bioelectron. 55, 386–390
(2014).
13. Tan J. L. et al. A novel “off–on” colorimetric and fluorescent rhodamine-based
pH chemosensor for extreme acidity. Spectrochim. Acta A Mol. Biomol. Spec-
trosc. 140, 489–494 (2015).
34. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease.
Cell 149, 274–293 (2012).
35. Weichhart, T. Mammalian target of rapamycin: a signaling kinase for every
aspect of cellular life. Methods Mol. Biol. 821, 1–14 (2012).
36. Mamane Y. et al. mTOR, translation initiation and cancer. Oncogene 25,
6416–6422 (2006).
14. Li, J., Li, D., Han, Y., Shuang, S. & Dong, C. Synthesis of 1-phenyl-3-biphenyl-5-
(N-ethylcarbazole-3-yl)-2-pyrazoline and its use as DNA probe. Spectrochim.
Acta A Mol. Biomol. Spectrosc. 73, 221–225 (2009).
15. Silver, K. S. & Soderlund, D. M. Differential sensitivity of rat voltage-sensitive
sodium channel isoforms to pyrazoline-type insecticides. Toxicol. Appl. Phar-
macol. 214, 209–217 (2006).
16. Zhao P. L. et al. Synthesis, fungicidal, and insecticidal activities of beta-
methoxyacrylate-containing N-acetyl pyrazoline derivatives. J. Agric. Food
Chem. 56, 10767–10773 (2008).
17. Silver, K. & Soderlund, D. M. State-dependent block of rat Nav1.4 sodium
channels expressed in xenopus oocytes by pyrazoline-type insecticides. Neu-
rotoxicology 26, 397–406 (2005).
37. Zaytseva, Y. Y., Valentino, J. D., Gulhati, P. & Evers, B. M. mTOR inhibitors in
cancer therapy. Cancer Lett. 319, 1–7 (2012).
38. Alayev, A. & Holz, M. K. mTOR signaling for biological control and cancer. J. Cell
Physiol. 228, 1658–1664 (2013).
39. Zhang, J. F., Li, M., Miao, J. Y. & Zhao, B. X. Biological activities of novel pyrazolyl
hydroxamic acid derivatives against human lung cancer cell line A549. Eur. J.
Med. Chem. 83, 516–525 (2014).
40. Wei Q. et al. Discovery of novel HSP90 inhibitors that induced apoptosis and
impaired autophagic flux in A549 lung cancer cells. Eur. J. Med. Chem. 145,
551–558 (2018).
41. Li N. et al. Discovery of a new autophagy inducer for A549 lung cancer cells.
Bioorg. Med. Chem. 27, 2845–2856 (2019).
18. Mishra, N. & Sasmal, D. Development of selective and reversible pyrazoline
based MAO-B inhibitors: virtual screening, synthesis and biological evaluation.
Bioorg. Med. Chem. Lett. 21, 1969–1973 (2011).
42. Papazisis, K. T., Geromichalos, G. D., Dimitriadis, K. A. & Kortsaris, A. H. Opti-
mization of the sulforhodamine B colorimetric assay. J. Immunol. Methods 208,
151–158 (1997).
19. Chimenti F. et al. Synthesis and inhibitory activity against human monoamine
oxidase of N1-thiocarbamoyl-3,5-di(hetero)aryl-4,5-dihydro-(1H)-pyrazole deri-
vatives. Eur. J. Med. Chem. 45, 800–804 (2010).
20. Rathish I. G. et al. Synthesis and antiinflammatory activity of some new 1,3,5-
trisubstituted pyrazolines bearing benzene sulfonamide. Bioorg. Med. Chem.
Lett. 19, 255–258 (2009).
21. Chirumarry S. et al. Design, synthesis and surfactant properties of
perfluorobutyl-based fluorinated sodium alkanesulfonates. J. Fluor. Chem. 197,
111–117 (2017).
22. Sharma P. K. et al. Synthesis and biological evaluation of some pyrazolylpyr-
azolines as anti-inflammatory-antimicrobial agents. Eur. J. Med. Chem. 45,
2650–2655 (2010).
43. Zhang X. et al. New fluorescent pH probes for acid conditions. Sens. Actuat. B-
Chem. 206, 663–670 (2015).
44. Jaishy, B. & Abel, E. D. Lipids, lysosomes, and autophagy. J. Lipid Res. 57,
1619–1635 (2016).
45. Settembre C. et al. A lysosome-to-nucleus signalling mechanism
senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31,
1095–1108 (2012).
46. Ge D. et al. Identification of a novel MTOR activator and discovery of a
competing endogenous RNA regulating autophagy in vascular endothelial
cells. Autophagy 10, 957–971 (2006).
47. Lokman, N. A., Elder, A. S. F., Ricciardelli, C. & Oehler, M. K. Chick chorioallantoic
membrane (CAM) assay as an in vivo model to study the effect of newly
identified molecules on ovarian cancer invasion and metastasis. Int. J. Mol. Sci.
13, 9959–9970 (2012).
23. Hu L. et al. Synthesis and antibacterial activity of C-12 pyrazolinyl spiro keto-
lides. Eur. J. Med. Chem. 45, 5943–5949 (2010).
24. Siddiqui, Z. N., Musthafa, T. N., Ahmad, A. & Khan, A. U. Thermal solvent-free
synthesis of novel pyrazolyl chalcones and pyrazolines as potential anti-
microbial agents. Bioorg. Med. Chem. Lett. 21, 2860–2865 (2011).
25. Marella A. et al. Pyrazolines: a biological review. Mini-Rev. Med. Chem. 13,
921–931 (2013).
48. Settembre, C., Fraldi, A., Medina, D. L. & Ballabio, A. Signals from the lysosome:
a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol.
Cell Biol. 14, 283–296 (2013).
49. Rabinowitz, J. D. & White, E. Autophagy and metabolism. Science 330,
1344–1348 (2010).
26. Altintop M. D. et al. A novel series of thiazolyl-pyrazoline derivatives: synthesis
and evaluation of antifungal activity, cytotoxicity and genotoxicity. Eur. J. Med.
Chem. 92, 342–352 (2015).
50. Liu R. et al. Itraconazole suppresses the growth of glioblastoma through
induction of autophagy: 8 involvement of abnormal cholesterol trafficking.
Autophagy 10, 1241–1255 (2014).
27. Yang W. et al. Design, modification and 3D QSAR studies of novel naphthalin-
containing pyrazoline derivatives with/without thiourea skeleton as anticancer
agents. Bioorg. Med. Chem. 21, 1050–1063 (2013).
28. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell
147, 728–741 (2011).
29. Fulda, S. & Kogel, D. Cell death by autophagy: emerging molecular
mechanisms and implications for cancer therapy. Oncogene 34, 5105–5113
(2015).
51. Nassour J. et al. Autophagic cell death restricts chromosomal instability during
replicative crisis. Nature 565, 659–663 (2019).
52. Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to
cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35 (2011).
53. Yu L. et al. Termination of autophagy and reformation of lysosomes regulated
by mTOR. Nature 465, 942–946 (2010).
54. Huang, S., Bjornsti, M. A. & Houghton, P. J. Rapamycins: mechanism of action
and cellular resistance. Cancer Biol. Ther. 2, 222–232 (2003).
Official journal of the Cell Death Differentiation Association