REPORTS
20. H. Muchalski, J. N. Johnston, in Science of Synthesis,
Pathway A: Rh-Nitrene
Stereoselective Synthesis (Thieme, Stuttgart, 2011), vol.
1, pp. 155–184.
21. D. M. Jenkins, Synlett 23, 1267–1270 (2012).
22. H. Jiang, X. P. Zhang, in Comprehensive Chirality, E. M. Carreira,
H. Yamamoto, Eds. (Elsevier, Amsterdam, 2012), vol. 5,
pp. 168–182.
23. R. Rios, A. Cordova, in Comprehensive Chirality,
E. M. Carreira, H. Yamamoto, Eds. (Elsevier, Amsterdam,
2012), vol. 6, pp. 399–413.
24. J. C. Bottaro, J. Chem. Soc. Chem. Commun. 1980, 560 (1980).
25. S. Andreae, E. Schmitz, Synthesis 1991, 327–341 (1991).
26. E. Vedejs, H. Sano, Tetrahedron Lett. 33, 3261–3264 (1992).
27. C.-M. Ho, T.-C. Lau, H.-L. Kwong, W.-T. Wong, J. Chem.
Soc. Dalton Trans. 1999, 2411–2414 (1999).
28. A. Koohang, C. L. Stanchina, R. M. Coates, Tetrahedron
55, 9669–9686 (1999).
29. H. Lebel, S. Lectard, M. Parmentier, Org. Lett. 9,
4797–4800 (2007).
30. Z. Lu, Y. Zhang, W. D. Wulff, J. Am. Chem. Soc. 129,
7185–7194 (2007).
31. C. Varszegi et al., Angew. Chem. Int. Ed. 47, 1477–1480
(2008).
32. C. Zhu, G. Li, D. H. Ess, J. R. Falck, L. Kürti, J. Am. Chem.
Soc. 134, 18253–18256 (2012).
Triplet TS1
R
R
∆G‡/∆H‡
=
O
O
O
O
H
N
4
17.6/6.6
4
H
Rh
Rh
Rh
Rh
317
N
Spin-state Interconversion
to Singlet via MECP
Ar
singlet diradical
19
∆G/∆H =
-8.8/-22.9
∆G/∆H =
4.9/6.5
No Barrier
loss of
ArO
DP H
(1a)
H
R
N
H
∆G/∆H =
-43.3/-45.2
O
O
4
Ar
N-H Aziridine
+
G/ H =
∆
∆
20
Ar
18
Rh
Rh
0. 0/0.0
2
Pathway B: Rh-Amine
TS3
∆G‡/∆H‡
-20.1/-47.7
=
33. C. G. Espino, K. W. Fiori, M. Kim, J. Du Bois, J. Am. Chem.
loss of
ArO
DPH
(1a)
Soc. 126, 15378–15379 (2004).
R
H
TS2
∆G‡/∆H ‡
24.6/-4.1
34. H. M. L. Davies, J. R. Manning, Nature 451, 417–424 (2008).
35. D. N. Zalatan, J. Du Bois, Top. Curr. Chem. 292,
347–378 (2010).
36. H. Lebel, in Catalyzed Carbon-Heteroatom Bond
Formation, A. K. Yudin, Ed. (Wiley-VCH, Weinheim,
Germany, 2011), pp. 137–155.
OAr
=
O
O
H
4
H
Rh
Rh
21
N
37. H. Lebel, K. Huard, S. Lectard, J. Am. Chem. Soc. 127,
14198–14199 (2005).
38. M. J. Frisch et al., Gaussian 09, Revision B.01; Gaussian,
Wallingford, CT, 2009.
∆G/ ∆H =
-24.1/-52.7
Ar
Fig. 4. Selected DFT-examined pathways for N-H aziridination of styrene in 2,2,2-trifluoroethanol
solvent. R, esp ligands. Energies in kcal/mol. MECP, minimum energy crossing point.
39. X. Lin, C. Zhao, C.-M. Che, Z. Ke, D. L. Phillips, Chem.
Asian J. 2, 1101–1108 (2007).
40. R. Lorpitthaya, Z.-Z. Xie, K. B. Sophy, J.-L. Kuo, X.-W. Liu,
Chemistry 16, 588–594 (2010).
41. L. Maestre, W. M. C. Sameera, M. M. Díaz-Requejo,
F. Maseras, P. J. Pérez, J. Am. Chem. Soc. 135,
1338–1348 (2013).
3. C. Botuha, F. Chemla, F. Ferreira, A. Perez-Luna,
in Heterocycles in Natural Product Synthesis,
K. C. Majumdar, S. K. Chattopadhyay, Eds. (Wiley-VCH,
Weinheim, Germany, 2011), pp. 3–39.
found to be lower in energy than reaction path-
ways on the singlet-spin energy surface (39, 40).
Because the Rh2(esp)2 catalyst and aziridine
product have singlet-spin ground states, the re-
action pathway must involve spin interconversion.
The mechanism outlined in Fig. 4 provides a
4. C. Ogawa, S. Kobayashi, in Science of Synthesis, Water in
Organic Synthesis, S. Kobayashi, Ed. (Thieme, Stuttgart,
2012), pp. 579–599.
5. R. Chawla, A. K. Singh, L. D. S. Yadav, RSC Adv. 3,
11385–11403 (2013).
6. J. T. Njardarson, Synlett 24, 787–803 (2013).
7. P. A. S. Lowden, in Aziridines and Epoxides in Organic
Synthesis, A. K. Yudin, Ed. (Wiley-VCH, Weinheim,
Germany, 2006), pp. 399–442.
8. F. M. D. Ismail, D. O. Levitsky, V. M. Dembitsky, Eur. J.
Med. Chem. 44, 3373–3387 (2009).
9. C. J. Thibodeaux, W. C. Chang, H. W. Liu, Chem. Rev.
112, 1681–1709 (2012).
10. H. M. I. Osborn, J. Sweeney, Tetrahedron Asymmetry 8,
1693–1715 (1997).
11. E. N. Jacobsen, in Comprehensive Asymmetric Catalysis,
E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Eds. (Springer,
Berlin, 1999), vol. 2, pp. 607–618.
12. P. Müller, C. Fruit, Chem. Rev. 103, 2905–2920 (2003).
13. C. Moessner, C. Bolm, in Transition Metals for Organic
Chemistry: Building Blocks and Fine Chemicals, M. Beller,
C. Bolm, Eds. (Wiley-VCH, Weinheim, Germany, ed. 2,
2004), vol. 2, pp. 389–402.
14. V. K. Aggarwal, D. M. Badine, V. A. Moorthie, in
Aziridines and Epoxides in Organic Synthesis, A. K. Yudin,
Ed. (Wiley-VCH, Weinheim, Germany, 2006), pp. 1–35.
15. G. Cardillo, L. Gentilucci, A. Tolomelli, in Asymmetric
Synthesis of Nitrogen Heterocycles, J. Royer, Ed.
(Wiley-VCH, Weinheim, Germany, 2009), pp. 3–50.
16. J. Sweeney, Eur. J. Org. Chem. 2009, 4911–4919 (2009).
17. H. Pellissier, Tetrahedron 66, 1509–1555 (2010).
18. S. Ye, Y. Tang, in Handbook of Cyclization Reactions,
S. Ma, Ed. (Wiley-VCH, Weinheim, Germany, 2010),
vol. 2, pp. 687–732.
Acknowledgments: J.R.F. thanks NIH (GM31278, DK38226)
and the Robert A. Welch Foundation (grant GL625910) for
funding. L.K. gratefully acknowledges the generous financial
support of the UT Southwestern Endowed Scholars in
Biomedical Research Program (W.W. Caruth Jr. Endowed
Scholarship in Biomedical Research), the Robert A. Welch
Foundation (grant I-1764), the American Chemical
3
route for stereospecific aziridination if 17 re-
acts with alkenes by forming the first C–N bond
via triplet transition state TS1 followed by spin
interconversion along the pathway to diradical
intermediate 19 or fast spin interconversion at
the diradical intermediate (41). After spin inter-
conversion, the second C–N bond is formed by
the coupling of singlet-paired electrons without
a barrier and leads directly to aziridine 20.
As alternatives to nitrene pathways, we also
explored polar mechanisms involving Rh-amine
and Rh-alkene coordination modes (see supple-
mentary materials). One of several possible polar
mechanisms is outlined as pathway B in Fig. 4.
This pathway is akin to the mechanism proposed
for amination of aryl boronic acids with 1a (32).
Although this mechanism may account for amino-
oxyarylated products (e.g., 4a and 4b) observed
under some experimental conditions, the calculated
barrier for this mechanism, as well as alternative
polar mechanisms, is higher in energy than the nitrene
mechanism presented in pathway A.
Society–Petroleum Research Fund (grant 51707-DNI1), and
the American Cancer Society and Simmons Cancer Center
Institutional Research Grant (New Investigator Award in
Cancer Research, ACS-IRG 02-196). D.H.E. thanks Brigham
Young University and the Fulton Supercomputing Lab. M.Y.
acknowledges a grant from UT Arlington to support the
upgrade of the x-ray facility. We also thank K. Schug,
M. Kukula, and the Shimadzu Center for Advanced Analytical
Chemistry (SCAAC, UT Arlington) for assistance in the full
characterization of new compounds. The generous donation
of 100 g of aminating agent 1a and 5 g of aminating agent
1b by Corvinus Chemicals, LLC (Dallas, TX), as well as 20 kg
of 2,2,2-trifluoroethanol (TFE) by Joyant Pharmaceuticals,
Inc. (Dallas, TX), is also gratefully acknowledged. We thank
P. S. Baran, J. Du Bois, E. M. Carreira, A. J. Catino, M. P. Doyle,
M. Krische, and R. Sarpong for helpful commentary. Metrical
parameters for the structure of compound 10ss are available
free of charge from the Cambridge Crystallographic Data
Centre under reference no. CCDC-959664.
Supplementary Materials
Materials and Methods
Figs. S1 to S5
Tables S1 to S8
References (42–69)
References and Notes
1. W. McCoull, F. A. Davis, Synthesis 2000, 1347–1365 (2000).
2. J. B. Sweeney, Chem. Soc. Rev. 31, 247–258 (2002).
9 September 2013; accepted 19 November 2013
10.1126/science.1245727
19. D. Karila, R. H. Dodd, Curr. Org. Chem. 15, 1507 (2011).
65