Journal of the American Chemical Society
Communication
Instrumental Analysis Center, Faculty of Engineering, Osaka
University, for assistance with 11B and 31P NMR spectroscopy
and high-resolution mass spectrometry.
Scheme 3. Synthetic Applications
REFERENCES
■
(1) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(b) Suzuki, A.; Brown, H. C. Organic Synthesis via Boranes; Aldrich:
Milwaukee, WI, 2003. (c) Hall, D. G. Boronic Acids; Wiley-VCH:
Weinheim, Germany, 2005. (d) Miyaura, N. Bull. Chem. Soc. Jpn. 2008,
81, 1535.
(2) Selected examples: (a) Ishiyama, T.; Miyaura, N. Chem. Rec.
2004, 3, 271. (b) Zhu, W.; Ma, D. Org. Lett. 2005, 8, 261. (c) Wilson,
D. A.; Wilson, C. J.; Moldoveanu, C.; Resmerita, A.-M.; Corcoran, P.;
Hoang, L. M.; Rosen, B. M.; Percec, V. J. Am. Chem. Soc. 2010, 132,
1800.
(3) Reviews: (a) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E.;
Smith III, M. R.; Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.;
Anastasi, N. R.; Hartwig, J. F.; Kellogg, R. M. Chemtracts 2002, 15,
195. (b) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.;
Hartwig, J. F. Chem. Rev. 2010, 110, 890.
(4) (a) Tobisu, M.; Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2006, 128,
8152. (b) Tobisu, M.; Kita, Y.; Ano, Y.; Chatani, N. J. Am. Chem. Soc.
2008, 130, 15982.
(5) (a) Tobisu, M.; Nakamura, R.; Kita, Y.; Chatani, N. J. Am. Chem.
Soc. 2009, 131, 3174. (b) Tobisu, M.; Nakamura, R.; Kita, Y.; Chatani,
N. Bull. Korean Chem. Soc. 2010, 31, 582.
(6) Kita, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2010, 12, 1864.
(7) (a) Taw, F. L.; White, P. S.; Bergman, R. G.; Brookhart, M. J. Am.
Chem. Soc. 2002, 124, 4192. (b) Taw, F. L.; Mueller, A. H.; Bergman,
R. G.; Brookhart, M. J. Am. Chem. Soc. 2003, 125, 9808. (c) Nakazawa,
H.; Kawasaki, T.; Miyoshi, K.; Suresh, C. H.; Koga, N. Organometallics
2004, 23, 117. (d) Nakazawa, H.; Kamata, K.; Itazaki, M. Chem.
Commun. 2005, 4004. (e) Itazaki, M.; Nakazawa, H. Chem. Lett. 2005,
34, 1054. (f) Nakazawa, H.; Itazaki, M.; Kamata, K.; Ueda, K. Chem.
Asian J. 2007, 2, 882.
(8) It has been reported that Fe−CH3, Fe−GeMe3, and Fe−SnMe3
complexes failed to promote the cleavage of a CH3−CN bond (see ref
7c).
(9) (a) Bis(pinacolato)diboron, B2(pin)2, could also be used in place
of 2, although the yield was slightly decreased. For example, the
reaction of 1 with B2(pin)2 under conditions identical to those shown
in Table 2 except for a reaction time of 60 h afforded a borylated
product in 60% yield. (b) See the Supporting Information (SI) for a
complete table of results of the optimization studies.
(10) Although PPh3 and Xantphos afforded 3 in almost identical
yields after 3 h, 1 was completely consumed when PPh3 was used,
while ca. 30% of 1 was recovered when Xantphos was employed.
(11) Reviews of C−CN bond activation: (a) Tobisu, M.; Chatani, N.
Chem. Soc. Rev. 2008, 37, 300. (b) Nakao, Y.; Hiyama, T. Pure Appl.
Chem. 2008, 80, 1097. Recent reports on Ni(0)-catalyzed C−CN
bond cleavage reactions: (c) Nakao, Y.; Yada, A.; Hiyama, T. J. Am.
Chem. Soc. 2010, 132, 10024. (d) Sun, M.; Zhang, H.-Y.; Han, Q.;
Yang, K.; Yang, S.-D. Chem.Eur. J. 2011, 17, 9566. (e) Nakai, K.;
Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2011, 133, 11066.
(12) Aryl bromides were borylated under the presented conditions.
Competition studies revealed relative reactivities of ArBr and ArCN
towards Rh-catalyzed borylation to be ca. 1:2.4.
(13) (a) Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc.
2007, 129, 758. (b) Noguchi, H.; Shioda, T.; Chou, C.-M.; Suginome,
M. Org. Lett. 2008, 10, 377.
(14) Unsuccessful applications to β-monosubstituted acrylonitriles
were due in part to the involvement of an undesired dehydrogenative
borylation pathway in which the borylrhodium species adds across the
alkene moiety rather than to a cyano group. See: Kondoh, A.;
Jamison, T. F. Chem. Commun. 2010, 46, 907.
later stage of a synthesis. For instance, the C−H bond
borylation of 821 followed by two sequential Suzuki−Miyaura
couplings at the iodide and bromide sites furnishes nitrile 11,
which can finally be converted into boronic ester 12 using our
rhodium methodology.
In summary, we have developed a rhodium-catalyzed nitrile
borylation using diboron 2. The reaction involves an
unprecedented C−CN bond activation that is promoted by a
borylrhodium complex. In addition, the reaction offers a new
strategy for the synthesis of complex boronic acid derivatives
wherein a cyano group can now be utilized as a boron
equivalent. Further mechanistic and synthetic studies are in
progress.
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed experimental procedures and characterization of
products. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas “Molecular Activation Directed
toward Straightforward Synthesis” from MEXT, Japan. M.T.
acknowledges the Ito Science Foundation. We also thank the
(15) Commercially available from Kanto Chemical Co., Inc. as
Cyhalohop butyl.
(16) See the SI for details.
117
dx.doi.org/10.1021/ja2095975 | J. Am. Chem.Soc. 2012, 134, 115−118