Journal of the American Chemical Society
Communication
REFERENCES
■
(1) (a) Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M. Adv. Mater. 2001,
13, 677. (b) Liang, C. D.; Li, Z. J.; Dai, S. Angew. Chem., Int. Ed. 2008, 47,
3696.
(2) (a) Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.;
Ryoo, R. Nature 2001, 412, 169. (b) Kim, C. H.; Lee, D. K.; Pinnavaia, T.
J. Langmuir 2004, 20, 5157. (c) Liu, R. L.; Wu, D. Q.; Feng, X. L.;
Mullen, K. Angew. Chem., Int. Ed. 2010, 49, 2565.
(3) Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Science
2009, 323, 760.
(4) (a) Zhai, Y. P.; Wan, Y.; Cheng, Y.; Shi, Y. F.; Zhang, F. Q.; Tu, B.;
Zhao, D. Y. J. Porous Mater. 2008, 15, 601. (b) Kim, T. W.; Park, I. S.;
Ryoo, R. Angew. Chem., Int. Ed. 2003, 42, 4375.
(5) Kowalewski, T.; Tsarevsky, N. V.; Matyjaszewski, K. J. Am. Chem.
Soc. 2002, 124, 10632.
Figure 3. CV (100 mV/s) and RRDE results (1600 rpm and 10 mV/s)
of bare, glassy C, A-NPC, and commercial 20 wt% Pt/C in O2-saturated
0.1 M KOH solution. The catalyst loading is 127 μg/cm2 for A-NPC and
25.4 μgPt/cm2 for Pt/C.
(6) Liang, C. D.; Hong, K. L.; Guiochon, G. A.; Mays, J. W.; Dai, S.
Angew. Chem., Int. Ed. 2004, 43, 5785.
(7) Lu, A. H.; Kiefer, A.; Schmidt, W.; Schuth, F. Chem. Mater. 2004,
and −0.157 V, respectively, very close to that of Pt/C (Figure 3).
The Tafel slope in the low current density region of A-NPC is 78
mV per decade, close to the value of 75 mV per decade for the Pt/
C catalyst (Figure S15). The kinetic current densities at −0.09 V
(vs Ag/AgCl) for A-NPC and Pt/C, calculated after correcting
for the diffusion-limiting current, were 0.77 and 0.75 mA/cm2
(Figure S15). Furthermore, metal-free A-NPC shows long-term
durability superior to Pt/C (Figure S15). The ORR performance
for A-NPC is obviously much better than most of the reported C-
based catalysts that require special templates and complicated
synthetic steps,2c,17 thus strongly demonstrating its pronounced
electrocatalytic activity. This is probably because of its high SBET
and high content of pyridinic N, which facilitated mass transport
and provided a high surface density of catalytic sites for the ORR
(Figure S6). The high sulfur content on the A-NPC surface
(Table S2) may give rise to additional contributions due to the
possible synergistic activation of C atoms by S and N dual-
doping.17
In conclusion, the PILs/PSs demonstrated herein are simple,
low cost, and versatile precursors for the generation of carbon
materials without any complicated synthesis, catalyst, template,
or other complex techniques. The correlation between the
precursors and the nature of the CMs was preliminarily
investigated in terms of yield, porosity, N content, graphitic
structure, and conductivity in order to possibly tailor the CMs at
the molecular level. This strategy is very easily scaled up for mass
production and could pave the way for developing novel CMs
through suitable combinations of acids and bases. One of the N-
doped nanoporous CMs, A-NPC, found immediate potential
application as a highly efficient metal-free catalyst for the oxygen
reduction reaction in an alkaline medium.
16, 100.
(8) Zhang, W. H.; Liang, C. H.; Sun, H. J.; Shen, Z. Q.; Guan, Y. J.;
Ying, P. L.; Li, C. Adv. Mater. 2002, 14, 1776.
(9) (a) Lee, J. S.; Wang, X. Q.; Luo, H. M.; Baker, G. A.; Dai, S. J. Am.
Chem. Soc. 2009, 131, 4596. (b) Paraknowitsch, J. P.; Zhang, J.; Su, D. S.;
Thomas, A.; Antonietti, M. Adv. Mater. 2010, 22, 87.
(10) (a) Lee, J. S.; Wang, X. Q.; Luo, H. M.; Dai, S. Adv. Mater. 2010,
22, 1004. (b) Wang, X. Q.; Dai, S. Angew. Chem., Int. Ed. 2010, 49, 6664.
(c) Fechler, N.; Fellinger, T. P.; Antonietti, M. Adv. Mater. 2013, 25, 75.
(11) (a) Yang, W.; Fellinger, T. P.; Antonietti, M. J. Am. Chem. Soc.
2011, 133, 206. (b) Fellinger, T. P.; Hasche, F.; Strasser, P.; Antonietti,
M. J. Am. Chem. Soc. 2012, 134, 4072. (c) Xu, X.; Li, Y.; Gong, Y.; Zhang,
P.; Li, H.; Wang, Y. J. Am. Chem. Soc. 2012, 134, 16987.
(12) Wooster, T. J.; Johanson, K. M.; Fraser, K. J.; MacFarlane, D. R.;
Scott, J. L. Green Chem. 2006, 8, 691.
(13) Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J.
O.; Schlogl, R.; Carlsson, J. M. J. Mater. Chem. 2008, 18, 4893.
(14) Shao, Y. Y.; Sui, J. H.; Yin, G. P.; Gao, Y. Z. Appl. Catal., B 2008,
79, 89.
(15) Yang, Q. H.; Xu, W. H.; Tomita, A.; Kyotani, T. Chem. Mater.
2005, 17, 2940.
(16) Paraknowitsch, J. P.; Wienert, B.; Zhang, Y. J.; Thomas, A.
Chem.Eur. J. 2012, 18, 15416.
(17) Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem., Int. Ed.
2012, 51, 11496.
(18) Gogotsi, Y.; Nikitin, A.; Ye, H. H.; Zhou, W.; Fischer, J. E.; Yi, B.;
Foley, H. C.; Barsoum, M. W. Nat. Mater. 2003, 2, 591.
(19) Yoon, S. B.; Chai, G. S.; Kang, S. K.; Yu, J. S.; Gierszal, K. P.;
Jaroniec, M. J. Am. Chem. Soc. 2005, 127, 4188.
(20) Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986, 352, 3.
(21) Iyer, V. S.; Vollhardt, K. P. C.; Wilhelm, R. Angew. Chem., Int. Ed.
2003, 42, 4379.
(22) Xia, Y. D.; Mokaya, R. Adv. Mater. 2004, 16, 1553.
(23) Kyotani, M.; Matsushita, S.; Nagai, T.; Matsui, Y.; Shimomura,
M.; Kaito, A.; Akagi, K. J. Am. Chem. Soc. 2008, 130, 10880.
(24) Ding, W.; Wei, Z.; Chen, S.; Qi, X.; Yang, T.; Hu, J.; Wang, D.;
Wan, L.-J.; Alvi, S. F.; Li, L. Angew. Chem., Int. Ed. 2013, 52, 11755.
(25) Czerw, R.; Terrones, M.; Charlier, J. C.; Blase, X.; Foley, B.;
Kamalakaran, R.; Grobert, N.; Terrones, H.; Tekleab, D.; Ajayan, P. M.;
Blau, W.; Ruhle, M.; Carroll, D. L. Nano Lett. 2001, 1, 457.
(26) Wiggins-Camacho, J. D.; Stevenson, K. J. J. Phys. Chem. C 2009,
113, 19082.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and characterization data. This material is
■
S
AUTHOR INFORMATION
Corresponding Author
■
(27) Moldoveanu, S. C. Pyrolysis of Organic Molecules with Applications
to Health and Environmental Issues; Elsevier: Amsterdam, Netherlands,
2010.
Notes
The authors declare no competing financial interest.
(28) Miran, M. S.; Kinoshita, H.; Yasuda, T.; Susan, M. A.; Watanabe,
M. Phys. Chem. Chem. Phys. 2012, 14, 5178.
ACKNOWLEDGMENTS
■
This work was supported by Japan Science and Technology
Agency−Advanced Low Carbon Technology Research and
Development Program of Japan. We thank Mr. Masashi Kondoh
for measurement of TEM.
1693
dx.doi.org/10.1021/ja411981c | J. Am. Chem. Soc. 2014, 136, 1690−1693