COMMUNICATIONS
performed with the wB97XD long range corrected hybrid
density functional of Head–Gordon.[25] with Dunningꢁs cor-
relation consistent double-z basis set cc-pVDZ.[26] The con-
vergence criteria were increased using the keyword “tight”.
Numerical integrations were performed with the “ultrafine”
grid option of Gaussian 09. Single-point calculations were
done with the correlation consistent cc-pVTZ triple-z basis
set of Dunning and a polarizable continuum solvation
model (PCM) for N,N-dimethylformamide (DMF) as imple-
mented in Gaussian 09. Gibbs free energies were calculated
at a temperature of 298.15 K. A standard state correction
for a 1M ideal solution was added to the energy of each
structure. Minima and transition states were confirmed with
normal mode analysis. The transition states were connected
to the corresponding intermediates with IRC calculations
(see the Supporting Information for details on the IRC cal-
culations).
2003, 103, 1071–1098; c) M. Fedorynski, Chem. Rev.
2003, 103, 1099–1132; d) D. L. S. Brahms, W. P. Dailey,
Chem. Rev. 1996, 96, 1585–1632.
[3] For selected recent examples, see: a) M. Huiban, M.
Tredwell, S. Mizuta, Z. Wan, X. Zhang, T. L. Collier, V.
Gouverneur, J. Passchier, Nat. Chem. 2013, 5, 941–944;
b) J. Zheng, J.-H. Lin, X. Y. Deng, J.-C. Xiao, Org. Lett.
2015, 17, 532–535.
[4] For selected examples, see a) S. Okusu, E. Tokunaga,
N. Shibata, Org. Lett. 2015, 17, 3802–3805; b) W.
Zhang, F. Wang, J. Hu, Org. Lett. 2009, 11, 2109–2112;
corrigendum: Org. Lett. 2013, 15, 5613.
[5] For selected examples, see a) Y. Zafrani, G. Sod-
Moriah, Y. Segall, Tetrahedron 2009, 65, 5278–5283;
b) Q.-Y. Chen, S.-W. Wu, J. Fluorine Chem. 1989, 44,
433–440; c) V. P. Mehta, M. F. Greaney, Org. Lett. 2013,
15, 5036–5039; d) L. Li, F. Wang, C. Ni, J. Hu, Angew.
Chem. 2013, 125, 12616–12620; Angew. Chem. Int. Ed.
2013, 52, 12390–12394; e) G. K. S. Prakash, S. Krishna-
moorthy, S. K. Ganesh, A. Kulkarni, R. Haiges, G. A.
Olah, Org. Lett. 2014, 16, 54–57; f) X.-Y. Deng, J.-H.
Lin, J. Zheng, J.-C. Xiao, Chem. Commun. 2015, 51,
8805–8808.
[6] For a selected example, see: a) K. Oshiro, Y. Morimoto,
H. Amii, Synthesis 2010, 2080–2084; b) Y. Kageshima,
C. Suzuki, K. Oshiro, H. Amii, Synlett 2015, 26, 63–66.
[7] For selected recent examples, see: a) J. Zheng, J.-H.
Lin, L.-Y. Yu, Y. Wei, X. Zheng, J.-C. Xiao, Org. Lett.
2015, 17, 6150–6153; b) J. Zheng, J. Cai, J.-H. Lin, Y.
Guo, J.-C. Xiao, Chem. Commun. 2013, 49, 7513–7515;
c) M. Hu, Z. He, B. Gao, L. Li, C. Ni, J. Hu, J. Am.
Chem. Soc. 2013, 135, 17302–17305.
General Procedure for the Synthesis of Carbamoyl
fluorides from Hydroxylamines
A solution of hydroxylamine 1 (0.25 mmol) and sodium bro-
modifluoroacetate (D, 98 mg, 0.50 mmol) in DMF (8 mL)
was stirred under argon at 958C for 90 min. Then, water
(10 mL) was added and the reaction mixture was extracted
with EtOAc (3ꢃ25 mL). The combined organic layers were
dried over Na2SO4, and the solvent was evaporated. The
product was purified by column chromatography.
Acknowledgements
[8] a) D. J. Harrison, G. M. Lee, M. C. Leclerc, I. Korob-
kov, R. T. Baker, J. Am. Chem. Soc. 2013, 135, 18296–
18299; b) G. M. Lee, D. J. Harrison, I. Korobkov, R. T.
Baker, Chem. Commun. 2014, 50, 1128.
[9] a) J. A. Erickson, J. I. McLoughlin, J. Org. Chem. 1995,
60, 742–767; b) N. A. Meanwell, J. Med. Chem. 2011,
54, 2529–2591.
This work was supported by the Deutsche Forschungsgemein-
schaft through the International Research Training Group
Seleca (IGRK 1628). We thank Prof. Dr. P. Kirsch (Merck
KGaA) for encouragement and helpful discussions.
References
[10] V. Matousek, E. Pietrasiak, L. Sigrist, B. Czarniecki, A.
Togni, Eur. J. Org. Chem. 2014, 3087–3092.
[1] a) P. Kirsch, Modern Fluoroorganic Chemistry: Synthe-
sis Reactivity, Applications, 2nd edn., Wiley-VCH, Wein-
heim, 2013; b) D. OꢁHagan, Chem. Soc. Rev. 2008, 37,
308–319; c) K. Mꢄller, C. Faeh, F. Diederich, Science
2007, 317, 1881–1886; d) W. K. Hagmann, J. Med.
Chem. 2008, 51, 4359–4369; e) I. Ojima, J. Org. Chem.
2013, 78, 6358–6383; f) S. Altomonte, M. Zanda, J. Flu-
orine Chem. 2012, 143, 57–93; g) Fluorine in Medicinal
Chemistry and Chemical Biology; (Ed.: I. Ojima),
Wiley-Blackwell, Chichester, 2009; h) D. OꢁHagan, J.
Fluorine Chem. 2010, 131, 1071–1081; i) S. Pursur, P. R.
Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev.
2008, 37, 320–330; j) J. Wang, M. Sꢅnchez-Rosellꢆ, J. L.
AceÇa, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A.
Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432–2506;
k) T. Fujiwara, D. OꢁHagan, J. Fluorine Chem. 2014,
167, 16–29; l) R. Berger, G. Resnati, P. Metrangolo, E.
Weber, J. Hulliger, Chem. Soc. Rev. 2011, 40, 3496–
3508.
[11] J. Ehrenfreund, Eur. Pat. Appl. EP 238445, 1987.
[12] a) J. Bieth, S. M. Vratsanos, N. H. Wassermann, A. G.
Cooper, B. F. Erlanger, Biochemistry 1973, 12, 3023–
3027; b) I. B. Wilson, M. A. Hatch, S. Ginsburg, J. Biol.
Chem. 1960, 235, 2312–2315; c) D. K. Myers, Biol.
Chem. J. 1956, 62, 556–563.
[13] H. Quan, N. Zhang, X. Zhou, H. Qian, A. Sekiya, J.
Fluorine Chem. 2015, 176, 26–30.
[14] C. E. Hatch, J. Org. Chem. 1978, 43, 3953–3957.
[15] a) H. J. Emeleus, J. F. Wood, J. Chem. Soc. 1948, 2183–
2188; b) F. S. Fawcett, C. W. Tullock, D. D. Coffman, J.
Am. Chem. Soc. 1962, 84, 4275–4285.
[16] A. Haas, T. Maciej, Z. anorg. allg. Chem. 1985, 524, 33–
39.
[17] a) B. Baasner, H. Hagemann, E. Klauke Eur. Pat. Appl.
EP 052842, 1981; b) C. K. Rao, S. K. Arora, R. Grover,
J. A. Durden, T. D. J. D’Silva, Eur. Pat. Appl. EP
136147, 1984; c) P. Svec, A. Eisner, L. Kolꢅrovꢅ, T.
Weidlich, V. Pejchal, A. Ruzicka, Tetrahedron Lett.
2008, 49, 6320–6323.
[2] For reviews, see: a) C. Ni, J. Hu, Synthesis 2014, 46,
842–863; b) W. R. Dolbier, M. A. Battiste, Chem. Rev.
Adv. Synth. Catal. 0000, 000, 0 – 0
6
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!