ACS Medicinal Chemistry Letters
Page 6 of 8
SAHA, suberoylanilide hydroxamic acid; cd, catalytic do-
main; ND, not determined; po, per os, oral administration; iv,
intravenous route of administration; CSF, cerebrospinal fluid.
In order to access larger quantities of 1-fluoro cyclopro-
pane 14, a modification of the general route was employed
(Scheme 1, lower branch). Herein, the bromophenyl
fluoro precursor (7) was obtained as the single desired
stereoisomer. After the key electrophilic fluorination re-
action of the cyclopropane ester (rac)-2, a 1:2 diastereo-
meric ratio of epimers (rac)-5 and (rac)-6 respectively was
achieved using THF and LDA (3 eq.) at -78 °C with NFSI
(N-fluorobenzene sulfonimide), on a multi-gram scale.
This resulted in a 25% isolated yield of (rac)-5 following
separation by flash chromatography. The addition of
LiCl, previously reported to increase the yields of 1-
fluorination of cyclopropyl esters,[15] was discovered to
favor further the formation of the undesired diastereoi-
somer (rac)-6. The enantiomerically pure methyl ester 7
was isolated by chiral supercritical fluid chromatography
(SFC). Subsequently the heterocyclic capping group was
introduced by Suzuki coupling, followed by hydroxamic
acid formation to deliver compound 14.
1
2
3
4
5
6
7
8
REFERENCES
(1) Martin, M.; Kettmann, R.; Dequiedt, F. Class IIa histone
deacetylases: regulating the regulators. Oncogene 2007, 26, 5450-
5467.
(2) Bertos, N. R.; Wang, A. H.; Yang, X. J. Class II histone
deacetylases: structure, function, and regulation. Biochem. Cell.
Biol. 2001, 79, 243-252.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) Mielcarek, M.; Benn, C. L.; Franklin, S. A.; Smith, D. L.;
Woodman, B.; Marks, P. A.; Bates, G. P. SAHA decreases
HDAC2 and 4 levels in vivo and improves molecular phenotypes
in the R6/2 mouse model of Huntington’s disease. PLoS One
2011, 6, e27746.
(4) Mielcarek, M.; Landles, C.; Weiss, A.; Bradaia, A.;
Seredenina, T.; Inuabasi, L.; Osborne, G. F.; Wadel, K.; Touller,
C.; Butler, R.; Robertson, J.; Franklin, S. A.; Smith, D. L.; Park, L.;
Marks, P. A.; Wanker, E. E.; Olson, E. N.; Luthi-Carter, R.; van
der Putten, H.; Beaumont, V.; Bates, G. P. HDAC4 reduction: a
novel therapeutic strategy to target cytoplasmic huntingtin and
ameliorate neurodegeneration. PLoS Biol. 2013, 11, e1001717.
(5) Mielcarek, M.; Zielonka, D.; Carnemolla, A.; Marcinkowski,
J. T.; Guidez, F. HDAC4 as a potential therapeutic target in neu-
rodegenerative diseases: a summary of recent achievements.
Front. Cell. Neurosci., published online March 23, 2009: DOI:
10.3389/fncel.2015.00042.
(6) Bürli, R. W.; Luckhurst, C. A.; Aziz, O.; Matthews, K. L.;
Yates, D.; Lyons, K. A.; Beconi, M.; McAllister, G.; Breccia, P.;
Stott, A. J.; Penrose, S. D.; Wall, M.; Lamers, M.; Leonard, P.;
Muller, I.; Richardson, C. M.; Jarvis, R.; Stones, L.; Hughes, S.;
Wishart, G.; Haughan, A. F.; O’Connell, C.; Mead, T.; McNeil, H.;
Vann, J.; Mangette, J.; Maillard, M.; Beaumont, V.; Munoz-
Sanjuan, I.; Dominguez, C. Design, synthesis, and biological
evaluation of potent and selective class IIa histone deacetylase
(HDAC) inhibitors as a potential therapy for Huntington’s dis-
ease. J. Med. Chem. 2013, 56, 9934-9954.
(7) Lahm, A.; Paolini, C.; Pallaoro, M.; Nardi, M. C.; Jones, P.;
Neddermann, P.; Sambucini, S.; Bottomley, M. J.; Lo Surdo, P.;
Carfí, A.; Koch, U.; De Francesco, R.; Steinkühler, C.; Gallinari, P.
Unraveling the hidden catalytic activity of vertebrate class IIa
histone deacetylases. Proc. Natl. Acad. Sci. U.SA. 2007, 104, 17335-
17340.
In conclusion, we have discovered potent and selective
class IIa HDAC hydroxamic acid inhibitors comprising a
tetrasubstituted cyclopropane scaffold. Compounds such
as 14 displayed high oral bioavailability with good brain
and muscle exposure. Such compounds exhibit suitable
properties for assessment of the impact of class IIa HDAC
catalytic site inhibition in preclinical HD disease models.
ASSOCIATED CONTENT
Supporting Information. The Supporting Information is
available free of charge on the ACS Publications website at
DOI: XXXXXXX.
Additional compound data; synthesis procedures and charac-
terization of compounds, quantification of compound
binding to HDAC4cd using SPR; X-ray crystallography data
collection and refinement statistics; rat pharmacokinetics.
AUTHOR INFORMATION
Corresponding Author
*E-mail: Celia.Dominguez@CHDIFoundation.org. Phone:
+1 310-342-5503.
(8) Bottomley, M J ; Lo Surdo, P.; Di Giovine, P.; Cirillo, A.;
Scarpelli, R.; Ferrigno, F.; Jones, P.; Neddermann, P.; De Frances-
co, R.; Steinkühler, C.; Gallinari, P.; Carfí, A. Structural and
functional analysis of the human HDAC4 catalytic domain re-
veals a regulatory structural zinc-binding domain. J. Biol. Chem.
2008, 283, 26694-26704.
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version
of the manuscript.
(9) Beconi, M.; Aziz, O.; Matthews, K.; Moumne, L.; O'Con-
nell, C.; Yates, D.; Clifton, S.; Pett, H.; Vann, J.; Crowley, L.;
Haughan, A. F.; Smith, D. L.; Woodman, B.; Bates, G. P.;
Brookfield, F.; Bürli, R. W.; McAllister, G.; Dominguez, C.;
Munoz-Sanjuan, I.; Beaumont, V. Oral administration of the
pimelic diphenylamide HDAC inhibitor HDACi 4b is unsuitable
for chronic inhibition of HDAC activity in the CNS in vivo. PLoS
One 2012, 7, e44498.
(10) Bradner, J. E.; West, N.; Grachan, M. L.; Greenberg, E. F.;
Haggarty, S. J.; Warnow, T.; Mazitschek, R. Chemical phyloge-
netics of histone deacetylases. Nat. Chem. Biol. 2010, 6, 238-243.
(11) Bradner, J. E. Fluorinated HDAC inhibitors and uses
thereof, WO2011084991.
Notes
The authors declare no conflicts of interest.
ACKNOWLEDGMENTS
The authors thank Vahri Beaumont, Ignacio Munoz-Sanjuan,
and Michel Maillard (CHDI) for helpful discussions. The
authors also express their gratitude to the analytical chemis-
try and purification team (BioFocus), including Mark Sandle,
Nicholas Richards and Paul Bond, and also Tania Mead and
Catherine O’Connell for ADME assays.
ABBREVIATIONS
(12) Mahar Doan, K. M.; Humphreys, J. E.; Webster, L. O.;
Wring, S. A.; Shampine, L. J.; Serabjit-Singh, C. J.; Adkinson, K.
K.; Polli, J. W. Passive permeability and P-glycoprotein-
ACS Paragon Plus Environment