2834
X.-M. Zhang et al.
LETTER
Acknowledgment
We are grateful for the financial support of the NSFC (Nos.
20672048, 20621091 and 20732002) and the Chang Jiang Scholars
Program. We thank Mr. Yongliang Shao for X-ray analysis of com-
pound 16.
References and Notes
(1) For recent instance, see: (a) Kaliappan, K. P.; Ravikumar,
V. Org. Lett. 2007, 9, 2417. (b) Lanfranchi, D. A.; Hanquet,
G. J. Org. Chem. 2006, 71, 4854. (c) González, S. A.;
Bradshaw, B. J.; Bonjoch, C. J. J. Org. Chem. 2005, 70,
3749. (d) Hagiwara, H.; Hamano, K.; Nozawa, M.; Hoshi,
T.; Suzuki, T.; Kido, F. J. Org. Chem. 2005, 70, 2250.
(e) Shigehisa, H.; Mizutani, T.; Tosaki, S.; Ohshima, T.;
Shibasaki, M. Tetrahedron 2005, 61, 5057. (f) Kanoh, N.;
Smith, A. B. I. I. I.; Ishiyama, H.; Minakawa, N.; Rainier,
J. D.; Hartz, R. A.; Cho, Y. S.; Cui, H.; Moser, W. H. J. Am.
Chem. Soc. 2003, 125, 8228. (g) Suzuki, A.; Nakatani, M.;
Nakamura, M.; Kawaguchi, K.; Inoue, M.; Katoh, T. Synlett
2003, 329. (h) Deng, W.-P.; Zhong, M.; Guo, X.-C.; Kende,
A. S. J. Org. Chem. 2003, 68, 7422. (i) Ling, T.;
Chowdhury, C.; Kramer, B. A.; Vong, B. G.; Palladino,
M. A.; Theodorakis, E. A. J. Org. Chem. 2001, 66, 8843.
(2) (a) Wieland, P.; Miescher, K. Helv. Chim. Acta 1950, 33,
2215. (b) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974,
39, 1615. (c) Eder, U.; Sauer, G.; Wiechert, R. Angew.
Chem., Int. Ed. Engl. 1971, 10, 496.
(3) (a) Davies, S. G.; Russell, A. J.; Sheppard, R. L.; Smith,
A. D.; Thomson, J. E. Org. Biomol. Chem. 2007, 5, 3190.
(b) He, L. Hecheng Huaxue 2007, 15, 231. (c) Sulzer-
Mossé, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A.
Synthesis 2007, 1729. (d) Kanger, T.; Kriis, K.; Laars, M.;
Kailas, T.; Müürisepp, A.-M.; Pehk, T.; Lopp, M. J. Org.
Chem. 2007, 72, 5168. (e) Lacoste, E.; Vaique, E.;
Berlande, M.; Pianet, I.; Vincent, J.-M.; Landais, Y. Eur. J.
Org. Chem. 2007, 167. (f) Nagamine, T.; Inomata, K.;
Endo, Y.; Paquette, L. A. J. Org. Chem. 2007, 72, 123.
(g) Kriis, K.; Kanger, T.; Laars, M.; Kailas, T.; Müürisepp,
A.-M.; Pehk, T.; Lopp, M. Synlett 2006, 1699. (h) Kasai,
Y.; Shimanuki, K.; Kuwahara, S.; Watanabe, M.; Harada, N.
Chirality 2006, 18, 177. (i) Davies, S. G.; Sheppard, R. L.;
Smith, A. D.; Thomson, J. E. Chem. Commun. 2005, 3802.
(j) Cheong, P. H.; Houk, K. N.; Warrier, J. S.; Hanessian, S.
Adv. Synth. Catal. 2004, 346, 1111. (k) Fuhshuku, K.-I.;
Tomita, M.; Sugai, T. Adv. Synth. Catal. 2003, 345, 766.
(l) Lo, L.-C.; Shie, J.-J.; Chou, T.-C. J. Org. Chem. 2002, 67,
282. (m) Hioki, H.; Hashimoto, T.; Kodama, M.
Figure 3 X-ray crystal structure of 16
mixture.17 Therefore we first protected the carbonyl group
of a,b-unsaturated enone of 9 to afford 10,18 then under
Kabalka’s conditions,17 the Brown hydroboration elabo-
rated 11 in good chemo- and regioselectivity as well as
high yield (up to 95%). Reduction of the thioether 11 with
W-2 Raney Ni in EtOH delivered 12. Conversion of the
hydroxyl group of 12 to its methylsulfonate ester, fol-
lowed by the substitution of azide provided 13 in 87%
yield over two steps. At this stage, we attempted the cru-
cial intramolecular Schmidt reaction to construct the third
ring.15 A variety of experiments were conducted, with a
particular emphasis on the Lewis acid and the solvent.
Both TiCl4 in CH2Cl2 and BF3·OEt2 in Et2O or CH2Cl2
could promote the reaction, but the yield was low (around
40–50%). Finally, we found that when the reaction was
carried out with BF3·OEt2 without any solvent, the lactam
product 14 could be obtained in up to 70% yield. Catalytic
hydrogenation of the C–C double bond of 14 afforded the
tricyclic core 15.
As we expected, the catalytic hydrogenation proceeded
from a less hindered side of the double bond. The relative
configuration between A and B rings in 15 was deter-
mined to be same as the natural occurring cylindricine-
type alkaloids, and it was further confirmed by X-ray
analysis of 16 (Figure 3) which was derived from 15 un-
der Lawesson’s conditions.19,20
In summary, we have demonstrated that prolinamide/
PPTS is an effective catalyst for the Hajos–Parrish reac-
tion. This desymmetric annulation can be applied to the
efficient and enantioselective synthesis of 6–6- or 5–6-
fused Wieland–Miescher ketone analogues, especially
bearing the functionalized quaternary angular chain. Fi-
nally, we have successfully applied this method to an ex-
peditious asymmetric construction of the tricyclic core of
cylindricines.
Tetrahedron: Asymmetry 2000, 11, 829. (n) Fuhshuku,
K.-I.; Funa, N.; Akeboshi, T.; Ohta, H.; Hosomi, H.; Ohba,
S.; Sugai, T. J. Org. Chem. 2000, 65, 129. (o) Bui, T.;
Barbas, C. F. Tetrahedron Lett. 2000, 41, 6951.
(4) Gu, P.; Zhao, Y.-M.; Tu, Y. Q.; Ma, Y.; Zhang, F. Org. Lett.
2006, 8, 5271.
(5) (a) Hiroya, K.; Takahashi, T.; Shimomae, K.; Sakamoto, T.
Chem. Pharm. Bull. 2005, 53, 207. (b) Ziegler, F. E.;
Wallace, O. B. J. Org. Chem. 1995, 60, 3626.
(6) Ramachary, D. B.; Kishor, M. J. Org. Chem. 2007, 72, 5056.
(7) (a) Inomata, K.; Barrague, M.; Paquette, L. A. J. Org. Chem.
2005, 70, 533. (b) Hanselmann, R.; Benn, M. Synth.
Commun. 1996, 26, 945.
Supporting Information for this article is available online at
Synlett 2008, No. 18, 2831–2835 © Thieme Stuttgart · New York