10.1002/cctc.201900314
ChemCatChem
COMMUNICATION
[1]
[2]
[3]
a) M. Bullock, Catalysis without Precious Metals, Wiley-VCH, Weinheim,
2010; b) R. J. M. Klein Gebbink, M.-E. Moret, Non-Noble Metal Catalysis,
Wiley-VCH, Weinhem, 2019.
[18] a) M. Perez, S. Elangovan, A. Spannenberg, K. Junge, M. Beller,
ChemSusChem 2017, 10, 83-86; b) A. Zirakzadeh, S. R. M. M. de Aguiar,
B. Stöger, M. Widhalm, K. Kirchner, ChemCatChem 2017, 9, 1744-1748;
c) O. Martínez-Ferraté, C. Werlé, G. Franciò, W. Leitner, ChemCatChem
2018, 10, 4514-4518; d) K. Z. Demmans, M. E. Olson, R. H. Morris,
Organometallics 2018, 37, 4608-4618; e) A. Bruneau-Voisine, D. Wang,
V. Dorcet, T. Roisnel, C. Darcel, J.-B. Sortais, Org. Lett. 2017, 19, 3656-
3659; f) D. Wang, A. Bruneau-Voisine, J.-B. Sortais, Catal. Commun.
2018, 105, 31-36.
a) L. Alig, M. Fritz, S. Schneider, Chem. Rev. 2018,
10.1021/acs.chemrev.8b00555; b) T. Irrgang, R. Kempe, Chem. Rev.
2018, 10.1021/acs.chemrev.8b00306.
a) D. A. Valyaev, G. Lavigne, N. Lugan, Coord. Chem. Rev. 2016, 308,
191-235; b) M. Stanbury, J.-D. Compain, S. Chardon-Noblat, Coord.
Chem. Rev. 2018, 361, 120-137; c) F. Kallmeier, R. Kempe, Angew.
Chem. Int. Ed. 2018, 57, 46-60; d) T. Zell, R. Langer, ChemCatChem
2017, 10, 1930-1940.
[19] a) M. Cettolin, X. Bai, D. Lübken, M. Gatti, S. V. Facchini, U. Piarulli, L.
Pignataro, C. Gennari, Eur. J. Org. Chem. 2019, 2019, 647-654; b) S.
Zhou, S. Fleischer, K. Junge, S. Das, D. Addis, M. Beller, Angew. Chem.
Int. Ed. 2010, 49, 8121-8125; c) A. A. Mikhailine, M. I. Maishan, R. H.
Morris, Org. Lett. 2012, 14, 4638-4641; d) W. Zuo, A. J. Lough, Y. F. Li,
R. H. Morris, Science 2013, 342, 1080-1083; e) H.-J. Pan, T. W. Ng, Y.
Zhao, Org. Biomol. Chem. 2016, 14, 5490-5493; f) S. V. Facchini, M.
Cettolin, X. Bai, G. Casamassima, L. Pignataro, C. Gennari, U. Piarulli,
Adv. Synth. Catal. 2018, 360, 1054-1059.
[4]
[5]
D. Wei, C. Darcel, Chem. Rev. 2018, 10.1021/acs.chemrev.8b00372.
W. Ai, R. Zhong, X. Liu, Q. Liu, Chem. Rev. 2018,
10.1021/acs.chemrev.8b00404.
[6]
[7]
V. Ritleng, M. Henrion, M. J. Chetcuti, ACS Catal. 2016, 6, 890-906.
S. Elangovan, C. Topf, S. Fischer, H. Jiao, A. Spannenberg, W.
Baumann, R. Ludwig, K. Junge, M. Beller, J. Am. Chem. Soc. 2016, 138,
8809-8814.
[8]
a) F. Kallmeier, T. Irrgang, T. Dietel, R. Kempe, Angew. Chem. Int. Ed.
2016, 55, 11806-11809; b) M. Garbe, K. Junge, S. Walker, Z. Wei, H.
Jiao, A. Spannenberg, S. Bachmann, M. Scalone, M. Beller, Angew.
Chem. Int. Ed. 2017, 56, 11237-11241; c) A. Bruneau-Voisine, D. Wang,
T. Roisnel, C. Darcel, J.-B. Sortais, Catal. Commun. 2017, 92, 1-4; d) D.
Wei, A. Bruneau-Voisine, T. Chauvin, V. Dorcet, T. Roisnel, D. A.
Valyaev, N. Lugan, J.-B. Sortais, Adv. Synth. Catal. 2018, 360, 676-681;
e) M. Glatz, B. Stöger, D. Himmelbauer, L. F. Veiros, K. Kirchner, ACS
Catal. 2018, 8, 4009-4016; f) M. B. Widegren, G. J. Harkness, A. M. Z.
Slawin, D. B. Cordes, M. L. Clarke, Angew. Chem. Int. Ed. 2017, 56,
5825-5828; g) S. Bachmann, M. Beller, M. Garbe, K. Junge, M. Scalone
(Hoffmann-La Roche Inc.), WO2018189060A1, 2018
[20] a) S. Kuhl, R. Schneider, Y. Fort, Organometallics 2003, 22, 4184-4186;
b) F. Alonso, P. Riente, M. Yus, Synlett 2008, 2008, 1289-1292; c) H. Xu,
P. Yang, P. Chuanprasit, H. Hirao, J. Zhou, Angew. Chem. Int. Ed. 2015,
54, 5112-5116; d) A. L. Iglesias, J. J. García, J. Mol. Catal. A: Chem.
2009, 298, 51-59.
[21] a) G. Zhang, S. K. Hanson, Chem. Commun. 2013, 49, 10151-10153; b)
J. R. Cabrero-Antonino, R. Adam, K. Junge, R. Jackstell, M. Beller, Catal.
Sci. Technol. 2017, 7, 1981-1985.
[22] S. A. Lawrence, Amines: synthesis, properties and applications,
Cambridge University Press, Cambridge U.K., 2004.
[23] a) M. Wills, Topics in Current Chemistry 2016, 374, 14; b) M. Wills, in
Modern Reduction Methods, doi:10.1002/9783527622115.ch11 (Eds.: P.
G. Andersson, I. J. Munslow), Wiley-VCH, Weinheim, 2008, pp. 271-296;
c) P.-G. Echeverria, T. Ayad, P. Phansavath, V. Ratovelomanana-Vidal,
Synthesis 2016, 48, 2523-2539.
[9]
a) S. Weber, B. Stöger, K. Kirchner, Org. Lett. 2018, 20, 7212-7215; b)
J. A. Garduño, J. J. García, ACS Catal. 2019, 9, 392-401.
[10] a) S. Elangovan, M. Garbe, H. Jiao, A. Spannenberg, K. Junge, M. Beller,
Angew. Chem. Int. Ed. 2016, 55, 15364-15368; b) R. van Putten, E. A.
Uslamin, M. Garbe, C. Liu, A. Gonzalez‐de‐Castro, M. Lutz, K. Junge,
E. J. M. Hensen, M. Beller, L. Lefort, E. A. Pidko, Angew. Chem. Int. Ed.
2017, 56, 7531-7534; c) M. B. Widegren, M. L. Clarke, Org. Lett. 2018,
20, 2654-2658; d) N. A. Espinosa-Jalapa, A. Nerush, L. J. W. Shimon, G.
Leitus, L. Avram, Y. Ben-David, D. Milstein, Chem. Eur. J. 2017, 23,
5934-5938.
[24] J. G. De Vries, C. J. Elsevier, The Handbook of Homogeneous
Hydrogenation, WILEY-VCH, Weinhem, 2007.
[25] B. Li, J.-B. Sortais, C. Darcel, RSC Adv. 2016, 6, 57603-57625.
[26] a) J. Zheng, S. Chevance, C. Darcel, J.-B. Sortais, Chem. Commun.
2013, 49, 10010-10012; b) J. Zheng, S. Elangovan, D. A. Valyaev, R.
Brousses, V. César, J.-B. Sortais, C. Darcel, N. Lugan, G. Lavigne, Adv.
Synth. Catal. 2014, 356, 1093-1097; c) D. A. Valyaev, D. Wei, S.
Elangovan, M. Cavailles, V. Dorcet, J.-B. Sortais, C. Darcel, N. Lugan,
Organometallics 2016, 35, 4090-4098; d) A. Bruneau-Voisine, D. Wang,
V. Dorcet, T. Roisnel, C. Darcel, J.-B. Sortais, J. Catal. 2017, 347, 57-
62; e) A. Bruneau-Voisine, L. Pallova, S. Bastin, V. César, J.-B. Sortais,
Chem. Commun. 2019, 55, 314-317.
[11] a) V. Papa, J. R. Cabrero-Antonino, E. Alberico, A. Spanneberg, K.
Junge, H. Junge, M. Beller, Chem. Sci. 2017, 8, 3576-3585; b) Y.-Q. Zou,
S. Chakraborty, A. Nerush, D. Oren, Y. Diskin-Posner, Y. Ben-David, D.
Milstein, ACS Catal. 2018, 8, 8014-8019.
[12] a) A. Kumar, T. Janes, N. A. Espinosa-Jalapa, D. Milstein, Angew. Chem.
Int. Ed. 2018, 57, 12076-12080; b) V. Zubar, Y. Lebedev, L. M. Azofra,
L. Cavallo, O. El-Sepelgy, M. Rueping, Angew. Chem. Int. Ed. 2018, 57,
13439-13443; c) A. Kaithal, M. Hölscher, W. Leitner, Angew. Chem. Int.
Ed. 2018, 57, 13449-13453.
[27] The dehydrogenation of amine b1 to imine a1 was tested in acetone, at
80 °C, in the presence of 1 (2 mol%) and tBuOK. After 18 h, no imine
was detected. See S.I.
[28] a) R. R. Donthiri, V. Pappula, D. Chandra Mohan, H. H. Gaywala, S.
Adimurthy, J. Org. Chem. 2013, 78, 6775-6781; b) Q. Xu, Q. Li, X. Zhu,
J. Chen, Adv. Synth. Catal. 2013, 355, 73-80; c) Q.-Q. Li, Z.-F. Xiao, C.-
Z. Yao, H.-X. Zheng, Y.-B. Kang, Org. Lett. 2015, 17, 5328-5331.
[29] Competitve experiments for the reduction of model imine 1a in the
[13] a) F. Bertini, M. Glatz, B. Stöger, M. Peruzzini, L. F. Veiros, K. Kirchner,
L. Gonsalvi, ACS Catal. 2019, 9, 632-639; b) S. Kar, A. Goeppert, J.
Kothandaraman, G. K. S. Prakash, ACS Catal. 2017, 7, 6347-6351; c) A.
Dubey, L. Nencini, R. R. Fayzullin, C. Nervi, J. R. Khusnutdinova, ACS
Catal. 2017, 7, 3864-3868.
presence
of
p-nitrotoluene,
N,N-dimethylaniline
and
N-
[14] U. Chakraborty, E. Reyes-Rodriguez, S. Demeshko, F. Meyer, A. Jacobi
von Wangelin, Angew. Chem. Int. Ed. 2018, 57, 4970-4975.
[15] D. Wei, A. Bruneau-Voisine, D. A. Valyaev, N. Lugan, J.-B. Sortais,
Chem. Commun. 2018, 54, 4302-4305.
methylbenzylamine, see Table S2, demontrated that the moderate yield
obtained for amines b17 and b29-31 are probably due to the intrinsic
electronic properties of the substrates (electrodonating substituents)
while p-nitrotoluene has a deleterious effect on the reduction of 1a.
[16] C. Wang, X. Yang, Chem. Asian J. 2018, 13, 2307-2315.
[17] a) D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621-6686; b) P. G.
Andersson, I. J. Munslow, Modern Reduction Methods, Wiley-VCH,
Weinhem, 2008.
…
This article is protected by copyright. All rights reserved.