Page 5 of 6
Organic & Biomolecular Chemistry
Please do not adjust margins
Journal Name
ARTICLE
However, by grinding the beads prior to irradiation we make
sure that the surface area is large enough to minimize the effect
of browning on photocleavage. The accuracy of our calculated
cleavage efficiency using three orthogonal methods proves that
the browning does not play a crucial role when our method is
used. Although the nature of the Merrifield polystyrene resin
itself might also contribute to this phenomenon, replacing it
with another solid support might hamper its applicability for
peptide and oligosaccharide synthesis. Using smaller beads with
a higher amount of light accessible surface area.
Acknowledgements
The authors thank Prof. Meital Reches fDoOr Im: 1i0c.r1o03s9c/oDp0yOaBn00a8ly2s1iDs
and Prof. Shlomo Yitzchaik for LED irradiation system.
Notes and references
1.
V. San Miguel, C. G. Bochet and A. del Campo, J. Am. Chem. Soc., 2011,
133, 5380-5388.
2.
3.
P. F. Wang, Asian J. Org. Chem., 2013, 2, 452-464.
M. Samarasimhareddy, I. Alshanski, E. Mervinetsky and M. Hurevich,
Synlett, 2018, 29, 880-884.
As a note, the exact irradiation efficiency might be setup-
dependent. Although there might be variability when the
cleavage will be performed by the similar setup in other labs,
the differences between irradiation of beads with and without
grinding were reproduced multiple times. Furthermore, we
demonstrated that the grinding effect was detrimental for both
stirrer and shaker setups, proving the validity and generality of
the observation. It is logical to think that the presence of UV
active moieties on peptides or saccharides might decrease the
efficiency of irradiation. However, photocleavage of
biopolymers have been demonstrated even with up to
hundreds of UV active moieties.28, 29 The effect of grinding the
beads will not have any negative effect on the efficiency. In
contrast, as demonstrated for disaccharide 5, the enhanced
exposure will make sure that the process still surpasses the
common strategies and might provide an advantage when
many UV absorbing groups are present. Many reports in the
past failed to reach efficient cleavage yields. Most of these
methods rely on very powerful setups sometimes apply filters
or rely on expensive flow systems.6, 14-16, 19, 25 We rely on a LED
lamp with a specific wavelength, do not use any filters and the
setup is as simple as it gets. Still, we managed to get
reproducible and high yield cleavage. Moreover, since we use a
batch reactor, we do not risk any clogging and can also stop for
checking the progress at any time.
4.
5.
H. Venkatesan and M. M. Greenberg, J. Org. Chem., 1996, 61, 525-529.
C. G. Bochet, J. Chem. Soc. Perk. Trans. 1, 2002, DOI: 10.1039/b009522m,
125-142.
R. J. T. Mikkelsen, K. E. Grier, K. T. Mortensen, T. E. Nielsen and K.
Qvortrup, Acs Comb. Sci., 2018, 20, 377-399.
C. M. Acevedo, N. A. Rahman and M. A. Lipton, Abstr. Pap. Am. Chem. S.,
2002, 223, B210-B210.
G. Barany and F. Albericio, J. Am. Chem. Soc., 1985, 107, 4936-4942.
C. DellAquila, J. L. Imbach and B. Rayner, Tetrahedron Lett., 1997, 38,
5289-5292.
L. Y. Qin, A. G. Cole, A. Metzger, L. O'Brien, X. L. Sun, J. Wu, Y. Xu, K. Xu, Y.
Zhang and I. Henderson, Tetrahedron Lett., 2009, 50, 419-422.
K. Qvortrup, V. V. Komnatnyy and T. E. Nielsen, Org. Lett., 2014, 16, 4782-
4785.
S. M. Sternson and S. L. Schreiber, Tetrahedron Lett., 1998, 39, 7451-7454.
P. L. Williams, M. Gairi, F. Albericio and E. Giralt, Tetrahedron, 1991, 47,
9867-9880.
C. P. Holmes, J. Org. Chem., 1997, 62, 2370-2380.
C. P. Holmes and D. G. Jones, J. Org. Chem., 1995, 60, 2318-2319.
R. Minkwitz and M. Meldal, Qsar Comb. Sci., 2005, 24, 343-353.
P. Dallabernardina, F. Schuhmacher, P. H. Seeberger and F. Pfrengle,
Chem. Eur. J., 2017, 23, 3191-3196.
H. S. Hahm, M. Hurevich and P. H. Seeberger, Nat. Commun., 2016, 7.
H. S. Hahm, M. K. Schlegel, M. Hurevich, S. Eller, F. Schuhmacher, J.
Hofmann, K. Pagel and P. H. Seeberger, Proc. Natl. Acad. Sci. U S A, 2017,
114, E3385-E3389.
M. Hurevich and P. H. Seeberger, Chem. Commun., 2014, 50, 1851-1853.
K. C. Nicolaou, N. Watanabe, J. Li, J. Pastor and N. Winssinger, Angew.
Chem. Int. Ed., 1998, 37, 1559-1561.
K. C. Nicolaou, N. Winssinger, J. Pastor and F. DeRoose, J. Am. Chem. Soc.,
1997, 119, 449-450.
D. Senf, C. Ruprecht, G. H. M. de Kruijff, S. O. Simonetti, F. Schuhmacher,
P. H. Seeberger and F. Pfrengle, Chem Eur. J., 2017, 23, 3197-3205.
K. L. M. Hoang, A. Pardo-Vargas, Y. T. Zhu, Y. Yu, M. Loria, M. Delbianco
and P. H. Seeberger, J. Am. Chem. Soc., 2019, 141, 9079-9086.
S. Eller, M. Collot, J. Yin, H. S. Hahm and P. H. Seeberger, Angew. Chem. Int.
Ed., 2013, 52, 5858-5861.
M. Hurevich, J. Kandasamy, B. M. Ponnappa, M. Collot, D. Kopetzki, D. T.
McQuade and P. H. Seeberger, Org. Lett., 2014, 16, 1794-1797.
D. Budhadev, K. Saxby, J. Walton, G. Davies, P. C. Tyler, R. Schworer and M.
A. Fascione, Org. Biomol. Chem., 2019, 17, 1817-1821.
O. Calin, S. Eller and P. H. Seeberger, Angew. Chem. Int. Ed., 2013, 52,
5862-5865.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
Conclusions
In summary, a new approach to cleave compounds from
photolabile linkers on solid support was described. A simple
combination of a benchtop LED irradiation and magnetic stirring
provides efficient photocleavage. By using a number of
complementary analytical techniques, we showed that
increasing the surface area of the polystyrene beads by grinding
expedite photocleavage. The strategy was demonstrated for a
fully protected oligosaccharide model, which proves that it is
straightforward, applicable for bio relevant targets, and can be
done in any standard laboratory. This can make the use of
photolabile linkers more accessible to the community. The
method can be very valuable for cleaving complex molecules
from photolabile linkers in high efficiency.
K. Naresh, F. Schumacher, H. S. Hahm and P. H. Seeberger, Chem.
Commun., 2017, 53, 9085-9088.
M. Wilsdorf, D. Schmidt, M. P. Bartetzko, P. Dallabernardina, F.
Schuhmacher, P. H. Seeberger and F. Pfrengle, Chem. Comm., 2016, 52,
10187-10189.
A. Isidro-Llobet, M. N. Kenworthy, S. Mukherjee, M. E. Kojach, K. Wegner,
F. Gallou, A. G. Smith and F. Roschangar, J. Org. Chem., 2019, 84, 4615-
4628.
31.
32.
33.
W. Li, T. Suzuki and H. Minami, Angew. Chem. Int. Ed., 2018, 57, 9936-
9940.
I. Alshanski, M. Bentolila, A. Gitlin-Domagalska, D. Zamir, S. Zorsky, S.
Joubran, M. Hurevich and C. Gilon, Org. Process. Res. Dev., 2018, 22, 1318-
1322.
S. Eissler, M. Kley, D. Bächle, G. Loidl, T. Meier and D. Samson, J. Pept. Sci.,
2017, 23, 757-762.
34.
35.
36.
37.
38.
O. Al Musaimi, A. Basso, B. G. de la Torre and F. Albericio, Acs Comb. Sci.,
2019, 21, 717-721.
J. N. Naoum, I. Alshanski, A. Gitlin-Domagalska, M. Bentolila, C. Gilon and
M. Hurevich, Org. Process. Res. Dev., 2019, 23, 2733-2739.
Y. Yu, S. Gim, D. Kim, Z. A. Arnon, E. Gazit, P. H. Seeberger and M.
Delbianco, J. Am. Chem. Soc., 2019, 141, 4833-4838.
A. Ajayaghosh and V. N. R. Pillai, Tetrahedron, 1988, 44, 6661-6666.
Conflicts of interest
There are no conflicts to declare.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins