ChemComm
Communication
Table 1 Selected photophysical and electrochemical data and experimental energy levels of 1a–c
E1I/2
E
E
Eonset
Egap(opt)
ELUMO(CV)
Egap(calc)
ELUMO(calc)
a
a
a
b
II
1/2
b
III b
pc
b
c
d
e
e
Compound
lmax
lonset
lem
1a
1b
1c
435
432
436
460
460
455
489
487
485
À0.95
À0.98
À0.87
À1.12
À1.15
À1.05
À1.85
À1.92
À1.71
À0.82
À0.84
À0.70
2.69
2.69
2.72
À3.49
À3.46
À3.54
3.0
3.1
3.1
À2.7
À2.7
À2.8
a
b
SCE
c
Measured in THF (nm). Measured from 0.1 M THF/nBu4PF6 vs. SCE (V) using ferrocene (Fc) as internal reference (E
= +0.48 V). Estimated
1/2Fc
d
from the absorption onset (eV). Estimated from CV EONSET according to ELUMO = À4.8 À e(EONSET À E1/2Fc) where E1/2Fc was measured in situ (eV).
e
Calculated B3LYP/6-31G* using Spartan 10 (eV).
fused azaacenes in fields in which electron-deficient organic materials
are currently used, such as electronics and plasmonics.
This work was carried out with the support of POLYMAT, the
Basque Science Foundation for Science (Ikerbasque), the Freiburg
Institute for Advanced Studies (Junior Research Fellowship),
Deutsche Forschungsgemeinschaft (AU 373/3-1 and MA 5215/4-1),
˜
Gobierno de Espana (Ministerio de Economia y Competitividad,
MAT2012-35826), Diputacion Foral de Guipuzcoa, the Portuguese
˜
ˆ
‘‘Fundaçao para a Ciencia e a Tecnologia’’ (PEst-OE/EEI/UI0752/2011
and CONC-REEQ/443/2005).
Notes and references
1 M. Bendikov, F. Wudl and D. F. Perepichka, Chem. Rev., 2004, 104,
4891–4946.
2 A. Manjavacas, F. Marchesin, S. Thongrattanasiri, P. Koval, P. Nordlander,
Fig. 3 Shapes of LUMO (top) and HOMO (bottom) levels of 1a–c.
´
´
D. Sanchez-Portal and F. J. Garcıa de Abajo, ACS Nano, 2013, 7, 3635–3643.
3 R. A. Pascal, Jr., Chem. Rev., 2006, 106, 4809–4819.
4 (a) J. Luo, X. Xu, R. Mao and Q. Miao, J. Am. Chem. Soc., 2012, 134,
13796–13803; (b) Q. F. Xu, H. M. Duong, F. Wudl and Y. Yang, Appl.
Phys. Lett., 2004, 85, 3357–3359.
5 (a) K. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott and K. Itami, Nat.
Chem., 2013, 5, 739–744; (b) Y. Fogel, M. Kastler, Z. Wang,
D. Andrienko, G. J. Bodwell and K. Mu¨llen, J. Am. Chem. Soc.,
2007, 129, 11743–11749.
coefficients that extend substantially the conjugation along the
longitudinal backbone. A closer look at the simulations
explains this trend. The LUMO and the LUMO+1 of pyrene-
fused twistacenes 1 are practically degenerate. In the case of 1a
and 1b, the B1g symmetrical orbital corresponds to the LUMO
while the B3u symmetrical orbital corresponds to the LUMO+1.
In the case of 1c the LUMO and the LUMO+1 interexchange,
thus the B3u symmetrical orbital becomes the LUMO and the
B1g symmetrical becomes the LUMO+1. The silyl substituents
do not contribute at all to the LUMO and the LUMO+1 of 1 as
evidenced from the simulations, which implies that the LUMO/
LUMO+1 exchange is the result of the twisted pyrene-fused
hexacene core. This is confirmed by calculations carried out at
the same level by increasing the twist angles on a model planar
pyrene-fused hexacene with no substituents on the acetylenes
(see Fig. S10 and Table S2, ESI†). The calculations indeed
evidence that the LUMO/LUMO+1 energy difference decreases
progressively with an increase of the size of the twist angle up to
241 after which the LUMO and LUMO+1 interchange.
Overall we have reported a synthetic strategy that allows
introduction of deliberately different-sized twist angles on pyrene-
fused azaacenes. The larger twists are obtained as a compromise
between volume and rigidity, as evidenced by X-ray crystallography.
The structural characterisation is complemented by a detailed descrip-
tion of the optoelectronic and electrochemical properties that are used
to estimate the energy of HOMO and LUMO levels. DFT calculations
illustrate that for large twist angles an interchange of the LUMO and
LUMO+1 levels of pyrene-fused azaacenes takes place, which results in
LUMOs that differ substantially in terms of symmetry and conjuga-
tion. We believe that this trend provides new perspectives for pyrene-
6 X. Guo, M. Myers, S. Xiao, M. Lefenfeld, R. Steiner, G. S. Tulevski,
J. Tang, J. Baumert, F. Leibfarth, J. T. Yardley, M. L. Steigerwald, P. Kim
and C. Nuckolls, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 11452–11456.
7 (a) H. M. Duong, M. Bendikov, D. Steiger, Q. C. Zhang, G. Sonmez,
J. Yamada and F. Wudl, Org. Lett., 2003, 5, 4433–4436; (b) J. Xiao,
H. M. Duong, Y. Liu, W. Shi, L. Ji, G. Li, S. Li, X.-W. Liu, J. Ma,
F. Wudl and Q. Zhang, Angew. Chem., Int. Ed., 2012, 51, 6094–6098.
8 (a) H. Vollmann, H. Becker, M. Corell and H. Streeck, Justus Liebigs Ann.
Chem., 1937, 531, 1–159; (b) A. Mateo-Alonso, C. Ehli, K. H. Chen,
D. M. Guldi and M. Prato, J. Phys. Chem. A, 2007, 111, 12669–12673;
(c) A. Mateo-Alonso, N. Kulisic, G. Valenti, M. Marcaccio, F. Paolucci and
M. Prato, Chem.–Asian. J., 2010, 5, 482–485; (d) N. Kulisic, S. More and
A. Mateo-Alonso, Chem. Commun., 2011, 47, 514–516; (e) S. More,
R. Bhosale, S. Choudhary and A. Mateo-Alonso, Org. Lett., 2012, 14,
4170–4173; ( f) B. X. Gao, M. Wang, Y. X. Cheng, L. X. Wang, X. B. Jing
and F. S. Wang, J. Am. Chem. Soc., 2008, 130, 8297–8306; (g) X. Feng,
F. Iwanaga, J.-Y. Hu, H. Tomiyasu, M. Nakano, C. Redshaw,
M. R. J. Elsegood and T. Yamato, Org. Lett., 2013, 15, 3594–3597;
(h) D. C. Lee, K. Jang, K. K. McGrath, R. Uy, K. A. Robins and
D. W. Hatchett, Chem. Mater., 2008, 20, 3688–3695; (i) O. Schiemann,
P. Cekan, D. Margraf, T. F. Prisner and S. T. Sigurdsson, Angew. Chem., Int.
Ed., 2009, 48, 3292–3295; ( j) M. Luo, H. Shadnia, G. Qian, X. Du, D. Yu,
D. Ma, J. S. Wright and Z. Y. Wang, Chem.–Eur. J., 2009, 15, 8902–8908.
9 K. Imai, M. Kurihara, L. Mathias, J. Wittmann, W. B. Alston and
J. K. Stille, Macromolecules, 1973, 6, 158–162.
10 (a) A. L. Appleton, S. Miao, S. M. Brombosz, N. J. Berger, S. Barlow,
S. R. Marder, B. M. Lawrence, K. I. Hardcastle and U. H. F. Bunz, Org.
Lett., 2009, 11, 5222–5225; (b) B. D. Lindner, J. U. Engelhart, M. Maerken,
O. Tverskoy, A. L. Appleton, F. Rominger, K. I. Hardcastle, M. Enders
and U. H. F. Bunz, Chem.–Eur. J., 2012, 18, 4627–4633.
11 The term quinoxaline–pyrene twist angle refers to the torsion angle
between atoms A, B, C and D. The term end-to-end twist angle refers
to the torsion angles between atoms E, F, G and H.
1978 | Chem. Commun., 2014, 50, 1976--1979
This journal is ©The Royal Society of Chemistry 2014