Organic Letters
Letter
fully saturated thiopyran, a soft Lewis base that could
competitively coordinate to Cu(I) complex to disturb the
catalysis, was accommodated to give product 5j with high
enantioselectivity but a slightly lower yield and syn selectivity.
The advantage of 7-azaindolinyl thioamide 2a compared with
N,N-diallylthioamide 1 is the engagement of various α-
substituted donors in direct aldol reactions. Along with
nonfunctionalized thiopropionamide and thiobutyramide (5k
and 5l), thioamides with an ether, ester, or trifluoromethyl
group were tractable donor substrates to deliver syn-aldol
products (5m−o).19 The stereoselectivity was slightly eroded,
but this was somewhat addressed by lowering the reaction
temperature to −78 °C. The reaction with (−)-citronellal
afforded the products 5p and 5q with similar diastereose-
lectivity irrespective of the R/S sense of the catalyst, indicating
that the stereoselection was determined by the asymmetric
environment of the catalyst via high-fidelity formation of the Z-
enolate.20 It is worthy of note that simple treatment of aldol
product 5a with 2 N HCl in MeOH at 60 °C converted it to
the corresponding methyl ester 6 without epimerization
(Scheme 3). Desulfurization with H2O2 in the presence of
ZrCl4 was another option to give 7-azaindolinyl amide 7,21
which is amenable to diverse functional group transforma-
tions.12
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by KAKENHI (17H03025
and 18H04276 in Precisely Designed Catalysts with Custom-
ized Scaffolding) from JSPS and MEXT. We are grateful to Dr.
Tomoyuki Kimura, Dr. Ryuichi Sawa, Ms. Yumiko Kubota, and
Dr. Kiyoko Iijima at the Institute of Microbial Chemistry for
technical support with NMR and X-ray crystallographic
analysis.
REFERENCES
■
(1) (a) Mahrwald, R. Modern Aldol Reactions; Wiley-VCH:
Weinheim, Germany, 2004. (b) Mahrwald, R. Modern Methods in
Stereoselective Aldol Reactions; Wiley-VCH: Weinheim, Germany,
2013.
a
Scheme 3. Transformation of the Product
(2) Evans, D. A. Aldrichmica Acta 1982, 15, 23.
(3) For reviews of Mukaiyama aldol reactions, see: (a) Beutner, G.
L.; Denmark, S. E. Angew. Chem., Int. Ed. 2013, 52, 9086. (b) Kan, S.
B.; Ng, K. K.; Paterson, I. Angew. Chem., Int. Ed. 2013, 52, 9097.
(c) Matsuo, J.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 9109.
(4) For seminal works on direct catalytic asymmetric aldol reactions,
see: (a) Yamada, Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M.
Angew. Chem., Int. Ed. Engl. 1997, 36, 1871. (b) Yoshikawa, N.;
Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc.
1999, 121, 4168. (c) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am.
Chem. Soc. 2000, 122, 2395. (d) Trost, B. M.; Ito, H. J. Am. Chem. Soc.
2000, 122, 12003.
(5) For reviews of direct catalytic asymmetric aldol reactions, see:
(a) Notz, W.; Tanaka, F.; Barbas, C. F., III. Acc. Chem. Res. 2004, 37,
580. (b) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev.
2007, 107, 5471. (c) Trost, B. M.; Brindle, C. S. Chem. Soc. Rev. 2010,
39, 1600. (d) Yamashita, Y.; Yasukawa, T.; Yoo, W. J.; Kitanosono, T.;
Kobayashi, S. Chem. Soc. Rev. 2018, 47, 4388.
(6) For reviews of cooperative catalysis, see: (a) Shibasaki, M.; Sasai,
H.; Arai, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 1236. (b) Kanai,
M.; Kato, N.; Ichikawa, E.; Shibasaki, M. Synlett 2005, 2005, 1491.
(c) Yamamoto, H.; Futatsugi, K. Angew. Chem., Int. Ed. 2005, 44,
1924. (d) Paull, D. H.; Abraham, C. J.; Scerba, M. T.; Alden-
Danforth, E.; Lectka, T. Acc. Chem. Res. 2008, 41, 655. (e) Peters, R.
Cooperative Catalysis; Wiley-VCH: Weinheim, Germany, 2015.
(7) Iwata, M.; Yazaki, R.; Chen, I. H.; Sureshkumar, D.; Kumagai,
N.; Shibasaki, M. J. Am. Chem. Soc. 2011, 133, 5554.
(8) Murai, T. Chemistry of Thioamides; Springer: Singapore, 2019.
(9) (a) Weidner, K.; Kumagai, N.; Shibasaki, M. Angew. Chem., Int.
Ed. 2014, 53, 6150. (b) Weidner, K.; Sun, Z.; Kumagai, N.; Shibasaki,
M. Angew. Chem., Int. Ed. 2015, 54, 6236. (c) Liu, Z.; Takeuchi, T.;
Pluta, R.; Arteaga Arteaga, F.; Kumagai, N.; Shibasaki, M. Org. Lett.
2017, 19, 710. (d) Matsuzawa, A.; Noda, H.; Kumagai, N.; Shibasaki,
M. J. Org. Chem. 2017, 82, 8304. (e) Noda, H.; Amemiya, F.;
Weidner, K.; Kumagai, N.; Shibasaki, M. Chem. Sci. 2017, 8, 3260.
(10) (a) Iwata, M.; Yazaki, R.; Suzuki, Y.; Kumagai, N.; Shibasaki,
M. J. Am. Chem. Soc. 2009, 131, 18244. (b) Bao, Y.; Kumagai, N.;
Shibasaki, M. Chem. Sci. 2015, 6, 6124. (c) Cui, J.; Ohtsuki, A.;
Watanabe, T.; Kumagai, N.; Shibasaki, M. Chem. - Eur. J. 2018, 24,
2598.
a
Reagents and conditions: (a) 2 N HCl/MeOH, 60 °C, 8 h, 85%; (b)
ZrCl4, 30% H2O2, rt, 1 h, 82%.
In summary, we utilized the 7-azaindoline auxiliary to probe
the enolate geometry in a direct catalytic asymmetric aldol
reaction of thioamides. The 7-azaindoline unit played a key
role in detecting the copper(I) enolate even at room
temperature, revealing the exclusive formation of a Z-
configured enolate. Considering the generally high syn
diastereoselectivity, a cyclic transition state is likely operative
in the C−C bond-forming process with aldehydes. A range of
α-substituted 7-azaindolinyl thioamides proved to be tractable
latent enolates, expanding the scope of direct aldol chemistry.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge at
Experimental procedures, spectroscopic data for new
compounds, crystallographic data for 2a and 5a′, and
Accession Codes
crystallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, U.K.; fax: +44 1223 336033.
C
Org. Lett. XXXX, XXX, XXX−XXX