ChemComm
Communication
Acc. Chem. Res., 2009, 42, 45; (d) A. S. K. Hashmi, Angew. Chem., Int.
Ed., 2010, 49, 5232; (e) N. Krause and C. Winter, Chem. Rev., 2011,
´
111, 1994; ( f ) D. Tejedor, G. Mendez-Abt, L. Cotos and
´
F. GarcıaTellado, Chem. Soc. Rev., 2013, 42, 458.
3 Some recent papers on activation of allenes by [Au]-complexes.
(a) H. Teller, M. Corbet, L. Mantilli, G. Gopakumar, R. Goddard,
W. Thiel and A. Fu¨erstner, J. Am. Chem. Soc., 2012, 134, 15331;
(b) B. Chen, W. Fan, G. Chai and S. Ma, Org. Lett., 2012, 14, 3616;
(c) D. H. Miles, M. Veguillas and F. Dean Toste, Chem. Sci., 2013,
´
´
4, 3427; (d) B. Alcaide, P. Almendros, M. Teresa Quiros, R. Lopez,
´
´
M. I. Menendez and A. Sochacka-Cwikla, J. Am. Chem. Soc., 2013,
´
135, 898; (e) B. Alcaide, P. Almendros, J. M. Alonso and I. Fernandez,
Fig. 2 Mechanism of [Au]-catalysed [1,3] rearrangement.
J. Org. Chem., 2013, 78, 6688; ( f ) N. Cox, M. R. Uehling, K. T. Haelsig
and G. Lalic, Angew. Chem., Int. Ed., 2013, 52, 4878; (g) B. Alcaide,
´
´
P. Almendros, J. M. Alonso, S. Cembellin, I. Fernandez, T. Martınez
del Campo and M. Rosario Torres, Chem. Commun., 2013, 49, 7779;
(h) K. R. Prasad and C. Nagaraju, Org. Lett., 2013, 15, 2778; (i) Z. Cao
and F. Gagosz, Angew. Chem., Int. Ed., 2013, 52, 9014.
either (i) coordination with the oxygen;8g,h or (ii) formation of Z1
complex A via the p-complexation with the electron rich olefin of
the allene unit.9 In the case of the reaction of 1c with
Au(PPh3)NO3, it has been proposed by Cui and co-workers that
the mechanism operates through the formation of an Z1 complex
(Fig. 2).13 As a control, when allenyl ether 1c was exposed to
Au(PPh3)SbF6 in the presence of 3 equivalents of methanol, the
methyl PMB ether 3 was obtained exclusively without any traces of
the rearranged product 2c or of the allylic acetal resulting from
hydroalkoxylation with methanol (see Scheme S1, ESI‡). This
complementary result obtained reveals that the electrophilicity of
the Au[I] complex is important and suggests the possibility of the
reaction proceeding through coordination of gold(I) to the lone pair
of oxygen.8h This coordination leads to significant elongation of the
carbinol C–O bond and it depends strongly on the electrophilicity
of the substituent attached to the oxygen.17 More electrophilic
substituents promote the cleavage of the carbinol C–O bond
leading to the [1,3] rearrangement.5b,6f On the other hand, the less
electrophilic substituents disfavour the cleavage of the C–O bond,
which was the case with the substrates 1a, 1b, 1v–1z, where the
hydrolysis of the C–O bond occurred through the allenyl ether
activation by the [Au]-complex.
In summary, the first report on the [Au]-catalysed [1,3] O-C
rearrangement of allenylethers leading to the C2-substituted
acryl aldehydes was documented. The reaction is facile even
with 5 ꢁ 10ꢀ2 mol% of catalyst, which we believe is the lowest
catalyst loading that has been reported in the area of homo-
geneous gold-catalysis.
We thank CSIR (India) for funding this project under the
12FYP ORIGIN program and a research fellowship to KCN.
We thank Mr Mahesh Patil and Mr Mahesh Shinde for the
synthesis of some intermediate allenes.
4 Selected reviews on Lewis acid catalysed [1,3] rearrangement:
(a) S. J. Meek and J. P. A. Harrity, Tetrahedron, 2007, 63, 3081;
(b) C. G. Nasveschuk and T. Rovis, Org. Biomol. Chem., 2008, 6, 240.
5 Some selected examples of Lewis acid catalysed [1,3] rearrangement:
(a) P. A. Grieco, J. D. Clark and C. T. Jagoe, J. Am. Chem. Soc., 1991,
113, 5488; (b) B. du Roizel, M. Sollogoub, A. J. Pearce and P. Sina¨y,
Chem. Commun., 2000, 1507; (c) M. F. Buffet, D. J. Dixon,
G. L. Edwards, S. V. Ley and E. W. Tate, J. Chem. Soc., Perkin Trans.
1, 2000, 1815; (d) Y. D. Zhang, N. T. Reynolds, K. Manju and T. Rovis,
J. Am. Chem. Soc., 2002, 124, 9720; (e) C. G. Nasveschuk and T. Rovis,
Angew. Chem., Int. Ed., 2005, 44, 3264.
6 [Pd]: (a) B. M. Trost and J. Xie, J. Am. Chem. Soc., 2006, 128, 6044;
(b) D. M. D’Souza, F. Rominger and T. J. J. Muller, Chem. Commun.,
2006, 4096; (c) S. Zhu, L. Wu and X. Huang, RSC Adv., 2012, 2, 132;
[Co]: (d) S. J. Meek, F. Pradaux, D. R. Carbery, E. H. Demont and
J. P. A. Harrity, J. Org. Chem., 2005, 70, 10046; [Ir]: (e) H.-Y. Wang,
D. S. Mueller, R. M. Sachwani, R. Kapadia, H. N. Londino and
L. L. Anderson, J. Org. Chem., 2011, 76, 3203; [Ru]: ( f ) N.-a. Harada,
T. Nishikata and H. Nagashima, Tetrahedron, 2012, 68, 3243.
7 Papers on mechanism: (a) C. G. Nasveschuk and T. Rovis, Org. Lett.,
2005, 7, 2173; (b) J. D. Frein and T. Rovis, Tetrahedron, 2006,
62, 4573; (c) C. G. Nasveschuk and T. Rovis, J. Org. Chem., 2008,
73, 612; (d) S. Hou, X. Li and J. Xu, J. Org. Chem., 2012, 77, 10856.
8 (a) P. H.-Y. Cheong, P. Morganelli, M. R. Luzung, K. N. Houk and
F. D. Toste, J. Am. Chem. Soc., 2008, 130, 4517; (b) B. Alcaide,
¨
´
P. Almendros, T. Martınez del Campo, E. Soriano and J. L. Marco-
Contelles, Chem.–Eur. J., 2009, 15, 9127; (c) R.-X. Zhu, D.-J. Zhang,
J.-X. Guo, J.-L. Mu, C.-G. Duan and C.-B. Liu, J. Phys. Chem. A, 2010,
114, 4689; (d) T. J. Brown, A. Sugie, M. G. Dickens and R. A. Widenhoefer,
Organometallics, 2010, 29, 4207; (e) O. Nieto Faza and A. R. de Lera, Top.
Curr. Chem., 2011, 302, 81; ( f ) M. Malacria, L. Fensterbank and
V. Gandon, Top. Curr. Chem., 2011, 302, 157; (g) D. V. Vidhani,
J. W. Cran, M. E. Krafft and I. V. Alabugin, Org. Biomol. Chem., 2013,
11, 1624; (h) D. V. Vidhani, J. W. Cran, M. E. Krafft, M. Manoharan and
I. V. Alabugin, J. Org. Chem., 2013, 78, 2059.
´
9 A. Ricci, A. DeglInnocenti, A. Capperucci, C. Faggi, G. Seconi and
L. Favaretto, Synlett, 1990, 471.
10 For Pt-catalyzed rearrangement of a-hydroxyallenes to a,b-unsaturated
´
´
ketones see: B. Alcaide, P. Almendros, I. Fernandez, T. Martınez del
Campo and T. Naranjo, Adv. Synth. Catal., 2013, 355, 2681.
11 (a) B. D. Sherry and F. D. Toste, J. Am. Chem. Soc., 2004, 126, 15978;
(b) Y. Liu, J. Qian, S. Louand and Z. Xu, Synlett, 2009, 2971.
12 (a) J. R. Vyvyan, H. E. Dimmitt, J. K. Griffith, L. D. Steffens and
R. A. Swanson, Tetrahedron Lett., 2010, 51, 6666; (b) M. E. Krafft,
K. M. Hallal, D. V. Vidhani and J. W. Cran, Org. Biomol. Chem., 2011,
9, 7535–7538.
Notes and references
1 Selected reviews: (a) G. Dyker, Angew. Chem., Int. Ed., 2000, 39, 4237;
¨
(b) A. Hoffmann-Roder and N. Krause, Org. Biomol. Chem., 2005,
3, 387; (c) A. S. K. Hashmi and G. J. Hutchings, Angew. Chem., Int.
Ed., 2006, 45, 7896; (d) A. Fu¨rstner and P. W. Davies, Angew. Chem., 13 D.-M. Cui, Z.-L. Zhengand and C. Zhang, J. Org. Chem., 2009, 74, 1426.
´˜
´
Int. Ed., 2007, 46, 3410; (e) E. Jimenez-Nunez and A. M. Echavarren, 14 N. Kern, T. Dombray, A. Blanc, J. M. Weibel and P. Pale, J. Org.
Chem. Rev., 2008, 108, 3326; ( f ) A. S. K. Hashmi and M. Rudolph, Chem., 2012, 77, 9227.
Chem. Soc. Rev., 2008, 37, 1766; (g) N. D. Shapiro and F. D. Toste, 15 (a) G. Kovacs, G. Ujaque and A. Lledos, J. Am. Chem. Soc., 2008,
´
Synlett, 2010, 675; (h) A. Corma, A. Leyva-Perez and M. J. Sabater,
130, 853; (b) R. E. M. Brooner, T. J. Brown and R. A. Widenhoefer,
Chem.–Eur. J., 2013, 19, 8276.
16 (a) S. Sanz, L. A. Jones, F. Mohrand and M. Laguna, Organometallics,
Chem. Rev., 2011, 111, 1657; (i) D. Garayalde and C. Nevado, ACS
Catal., 2012, 2, 1462.
´
2 Selected reviews: (a) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem.
Rev., 2008, 108, 3351; (b) Z. Li, C. Brouwer and C. He, Chem. Rev.,
2007, 26, 952; (b) N. Mezailles, L. Ricard and F. Gagosz, Org. Lett.,
2005, 7, 4133.
2008, 108, 3239; (c) M. Brasholz, H. U. Reissig and R. Zimmer, 17 H. Mayer and M. Patz, Angew. Chem., Int. Ed. Engl., 1994, 33, 938.
2154 | Chem. Commun., 2014, 50, 2152--2154
This journal is ©The Royal Society of Chemistry 2014