advantages derived from the use of 1 as the starting material,
it is important to note that heterogeneous chiral catalysts are,
in principle, best suited for industrial applications, in
particular due to the possibility of their use in continuous
flow systems.5 In this ideal system, the solution containing
the reagents is feed into a reactor in which a chiral
heterogeneous catalyst promotes their transformation to the
desired chiral products. The need for catalyst separation is
suppressed, and the products can be easily isolated just by
removing the solvent, increasing the efficiency, and reducing
the environmental impact of the whole process.
Scheme 1a
Enantioselective addition of dialkylzinc to aldehydes in
the presence of chiral promoters such as chiral â-amino
alcohols has been shown to be a useful method of inducing
asymmetric carbon-carbon bond formation.6,7 Some chiral
amino alcohols derived from 1 act as excellent ligands for
this enantioselective reaction.4 Here we report the results
obtained for this reaction with both heterogeneous and
homogeneous ligands synthesized from 1. Some of the
polymer-supported ligands prepared have shown an optimal
behavior in terms of activity, selectivity, and enantioselec-
tivity, being able to act efficiently in flow systems. An
increase in selectivity and enantioselectivity has been
observed upon immobilization, and those features are
maintained for several catalytic cycles.
According to former results and to a preliminary screening
on different supported â-amino alcohols derived from 1 as
catalysts for the enantioselective addition of diethylzinc to
benzaldehyde, we decided to focus our work on the prepara-
tion and study of supported catalysts such as 7 and 10,
bearing phenyl groups at the R-position. This diphenyl
hydroxymethylene moiety is present in a huge number of
asymmetric catalysts and has been termed the “magic
group”.8
To obtain a better understanding of the behavior of a given
heterogeneous catalyst, it is absolutely necessary to evaluate
the activity of the homogeneous analogues. It is well-known
that results obtained in an enantioselective transformation
can dramatically change when going from homogeneous to
a Reagents and conditions: (a) Pd/C. (b) SO2Cl/MeOH. (c)
PhCH2Cl (1.2 equiv), 80%. (d) PhMgCl, THF, ref 4a. (e) 3 (3
equiv), Merrifield Resin (1 equiv, loading 1.1 mequiv/g, 1% cross-
linking), NaHCO3 (6 equiv), THF, quant. (f) PhMgCl, THF, quant.
(g) 4-Chlorovinylbenzene (1.2 equiv), NaHCO3 (2.5 equiv), 18 h,
70 °C, 40% (ref 11b). (h) PhMgX (3 equiv), 75% (ref 15). (i)
9/DVB/VB/toluene/1-dodecanol, AIBN, 80 °C, 99%.
heterogeneous phases.9-11 For that reason, the synthesis of
the homogeneous catalyst 5 was carried out (see, Scheme
1) as the first step.
(4) (a) Wallbaum, S.; Martens, J. Tetrahedron: Asymmetry 1991, 2,
1093-1096. (b) Wilken, J.; Kossenjans, M.; Saak, W.; Pohl, S.; Martens,
J. Liebigs Ann. Chem. 1997, 573-579. (c) Wassmann, S.; Wilken, J.;
Martens, J. Tetrahedron: Asymmetry 1999, 10, 4437-4445. (d) Kossenjans,
M.; Soebert, M.; Wallbaum, S.; Harms, K.; Martens, J.; Aurich, H. G.; J.
Chem. Soc., Perkin Trans. 1 1999, 2353-2365. (e) Graf von Keyserlingk,
N.; Martens, J. Eur. J. Org. Chem. 2002, 301-308.
(8) (a) Soai, K.; Ookawa, A.; Kaba, T.; Ogawa, K. J. Am. Chem. Soc.
1987, 109, 7111-7115. (b) Braun, M. Angew. Chem., Int. Ed. 1996, 35,
519.
(5) (a) Sherrington, D. C. Chemistry of Waste Minimization; Clark, J.
H., Ed.: Blackie: London, 1995; Chapter 6, p 141. (b) de Miguel, Y. R.;
Brule´, E.; Margue, R. G. J. Chem. Soc., Perkin Trans. 1 2001, 3085-
3094. (c) Clapham, B.; Reger, T. S.; Janda, K. D. Tetrahedron 2001, 57,
4637-4662.
(6) For general references, see: (a) Noyori, R.; Kitamura, M Angew.
Chem., Int. Ed. Engl. 1991, 30, 49-69. (b) Soai, K.; Niwa, S.; Chem. ReV.
1992, 92, 833-856. (c) Pu, L.; Yu, H. B.; Chem. ReV. 2001, 101, 757-
852.
(7) For examples of heterogeneous catalysts in Et2Zn additions, see: (a)
Itsuno, S.; Sakurai, Y.; Ito, K.; Marayuma, T.; Nakahama, S.; Fre´chet, J.
M. J. J. Org. Chem. 1990, 55, 304-310. (b) Liu., G.; Ellman, J. A. J. Org.
Chem. 1995, 60, 7712-7713. (c) Halm, C.; Kurth, K. Angew. Chem., Int.
Ed. 1998, 37, 510-512. (d) Vidal-Ferran, A.; Bampos, N.; Moyano, A.;
Perica´s, M. A.; Riera, A.; Sanders, J. K. M. J. Org. Chem. 1998, 63, 6309-
6318. (e) Holte, P.; Wijgergangs, J.-P.; Thijs, L.; Zwanenburg, B. Org.
Lett. 1999, 1, 1095-1097. (f) Brouwer, A. J.; Linden, H. J.; Liskamp, R.
M. J. J. Org. Chem. 2000, 65, 1750-1757. (g) Seller, H.; Rheiner, P. B.;
Seebach, D. HelV. Chim. Acta 2002, 85, 352-387.
(9) (a) Altava, B.; Burguete, M. I.; Escuder, B.; Luis, S. V.; Salvador,
R. V.; Fraile, J. M.; Mayoral, J. A.; Royo, A. J. J. Org. Chem. 1997, 62,
3126-3134. (b) Annis, D. A.; Jacobsen, E. N. J. Am. Chem. Soc. 1999,
121, 4147-4154. (c) Adria´n, F.; Burguete, M. I.; Luis, S. V.; Fraile, J. M.;
Mayoral, J. A.; Royo, A. J.; Garc´ıa, J. I.; Garc´ıa, J.; Garc´ıa-Espan˜a, E.;
Sa´nchez, M. C. Eur. J. Inorg. Chem. 1999, 2347-2354. (d) Altava, B.;
Burguete, M. I.; Garc´ıa-Verdugo, E.; Luis, S. V.; Pozo, O.; Salvador, R.
V. Eur. J. Org. Chem. 1999, 2263-2267. (e) Altava, B.; Burguete; M. I.;
Collado, M.; Garc´ıa-Verdugo, E.; Luis, S. V.; Salvador, R. V.; Vicent, M.
J. Tetrahedron Lett. 2001, 42, 1673-1675. (f) Hu, J.; Zhao, G.; Ding, Z.;
Angew. Chem., Int. Ed. 2001, 40, 1109-1111.
(10) (a) Altava, B.; Burguete, M. I.; Garc´ıa, J. I.; Luis, S. V.; Fraile, J.
M.; Mayoral, J. A.; Vicent, M. J. Angew. Chem., Int. Ed. 2000, 39, 1503-
1506.
(11) (a) Kamahori, K.; Ito, K.; Itsuno,S. J. Org. Chem. 1996, 61, 8321-
8324. (b) Altava, B.; Burguete, M. I.; Garc´ıa-Verdugo, E.; Luis, S. V.;
Salvador, R. V.; Vicent, M. J. Tetrahedron 1999, 55, 12897-12906. (c)
Burguete, M. I.; Fraile, J. M.; Garc´ıa, J. I.; Garc´ıa-Verdugo, E.; Herrer´ıas,
C. I.; Luis, S. V.; Mayoral, J. A. J. Org. Chem. 2001, 66, 8893-8901.
3948
Org. Lett., Vol. 4, No. 22, 2002