Journal of the American Chemical Society
Communication
(19) Experiments suggesting the intermediacy of a radical were
performed; see SI for details.
ACKNOWLEDGMENTS
■
This work was supported by startup funds from Oklahoma
State University. We are grateful to AAG for reading and
providing feedback for this manuscript.
(20) Using d-MeCN gives no deuterium incorporation into the
product while use of deuterium-labeled dicyclohexyl-d5-ethylamine
gives 32% deuterium incorporation into the mono-HDF product.
These results suggest that either α-C-H of the amine radical cation can
serve as the H-atom source. See SI for details.
(21) We believe iminium ions are initially formed and serve as the
fluoride counterion. However, we have not been able to isolate these
salts. Under rigorously anhydrous conditions we have observed
bis(diisopropylammonium) hexafluorosilicate precipitating from sol-
ution when reactions are run in borosilicate tubes. Presumably this
comes from fluoride etching silicon from the tube walls and hydrolysis
of the ethyl group of the iminium. In reactions run under less rigorous
conditions, we believe advantageous water leads to hydrolysis of the
iminium prior to silicon etching to afford secondary amine HF salts.
See SI for details and crystal structure.
REFERENCES
■
(1) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc.
Rev. 2008, 37, 320.
(2) (a) Mazzotti, A. R.; Campbell, M. G.; Tang, P.; Murphy, J. M.;
Ritter, T. J. Am. Chem. Soc. 2013, 135, 14012. (b) Lee, H. G.; Milner,
P. J.; Buchwald, S. L. Org. Lett. 2013, 15, 5602. (c) Ichiishi, N.; Canty,
A. J.; Yates, B. F.; Sanford, M. S. Org. Lett. 2013, 15, 5134. (d) Fier, P.
S.; Luo, J.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2552. (e) Ye, Y.;
Schimler, S. D.; Hanley, P. S.; Sanford, M. S. J. Am. Chem. Soc. 2013,
135, 16292. (f) Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010,
132, 12150. (g) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134,
10795.
(22) Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti,
F. Top. Curr. Chem. 2007, 281, 143.
(23) Beletskaya, I. P.; Artamkina, G. A.; Mil’chenko, A. Y.; Sazonov,
P. K.; Shtern, M. M. J. Phys. Org. Chem. 1996, 9, 319.
(24) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.;
von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85.
(3) (a) Wang, X.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131,
7520. (b) Chan, K. S. L.; Wasa, M.; Wang, X.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2011, 50, 9081. (c) Truong, T.; Klimovica, K.; Daugulis, O. J.
Am. Chem. Soc. 2013, 135, 9342.
(25) For details, see the Supporting Information.
(4) Lentz, D.; Braun, T.; Kuehnel, M. F. Angew. Chem., Int. Ed. 2013,
(26) Conceivably, access to the less reactive ortho position is possible
by using the amino group as a temporary blocking group which adds
with similar preferences. After the HDF reaction is complete, the
amino group can be converted to the fluorine via diazotization.
(27) A small amount ∼7% of hydrodebromination product was
observed. This was observed previously: Nguyen, J. D.; D’Amato, E.
M.; Narayanam, J. M. R.; Stephenson, C. R. J. Nature Chem. 2012, 4,
854.
52, 3328.
(5) (a) Edelbach, B. L.; Fazlur Rahman, A. K.; Lachicotte, R. J.; Jones,
W. D. Organometallics 1999, 18, 3170. (b) Arndt, P.; Spannenberg, A.;
Baumann, W.; Burlakov, V. V.; Rosenthal, U.; Becke, S.; Weiss, T.
Organometallics 2004, 23, 4792.
(6) (a) Aizenberg, M.; Milstein, D. J. Am. Chem. Soc. 1995, 117, 8674.
(b) Aizenberg, M.; Milstein, D. Science 1994, 265, 359.
(7) (a) Archibald, S. J.; Braun, T.; Gaunt, J. A.; Hobson, J. E.; Perutz,
(28) (a) K. Morita, D.; A. David, S.; Tumas, W.; K. Morita, D.; R.
Pesiri, D.; H. Glaze, W. Chem. Commun. 1998, 1397. (b) Hirai, T.;
Hamasaki, A.; Nakamura, A.; Tokunaga, M. Org. Lett. 2009, 11, 5510.
(29) For a recent example, see; Zhang, J.; Chen, W.; Rojas, A. J.;
Jucov, E. V.; Timofeeva, T. V.; Parker, T. C.; Barlow, S.; Marder, S. R.
J. Am. Chem. Soc. 2013, 135, 16376.
(30) Of the substrates tried, the rate differences between the first and
sequential reductions were sufficiently different to be able to isolate the
desired HDF product. Two exceptions were tri(pentafluorophenyl)
phosphine (1x) and the decafluorobiphenyl (1w).
(31) We believe the addition of the electron occurs at the LUMO
which resembles primarily π* and that fragmentation then occurs
upon crossover to the lowest lying C−F σ* orbital. For a better
explanation of this process, see; ref 16a. In the case of 1l (Ar-Cl),
presumably the C−Cl σ* is lower in energy and hence fragmention
occurs at this carbon. Alternatively, it is possible that the C−Cl σ*
orbital is low enough in energy that it is the LUMO in which case the
π* orbital may not be involved at all.
R. N. J. Chem. Soc., Dalton Trans. 2000, 2013. (b) Fischer, P.; Gotz, K.;
Eichhorn, A.; Radius, U. Organometallics 2012, 31, 1374.
̈
(8) Breyer, D.; Braun, T.; Klaring, P. Organometallics 2012, 31, 1417.
̈
(9) Zhan, J.-H.; Lv, H.; Yu, Y.; Zhang, J.-L. Adv. Synth. Catal. 2012,
354, 1529.
(10) For an example of an Al-H reductant, see: Jager-Fiedler, U.;
̈
Klahn, M.; Arndt, P.; Baumann, W.; Spannenberg, A.; Burlakov, V. V.;
Rosenthal, U. J. Mol. Catal. A: Chem. 2007, 261, 184.
(11) For an example of an R3Si-H reductant, see: Reade, S. P.;
Mahon, M. F.; Whittlesey, M. K. J. Am. Chem. Soc. 2009, 131, 1847.
(12) Gant, K. S.; Christophorou, L. G. J. Chem. Phys. 1976, 65, 2977.
(13) (a) Clot, E.; Eisenstein, O.; Jasim, N.; Macgregor, S. A.;
McGrady, J. E.; Perutz, R. N. Acc. Chem. Res. 2011, 44, 333. (b) Sun,
A. D.; Love, J. A. Dalton Trans. 2010, 39, 10362. (c) Edelbach, B. L.;
Kraft, B. M.; Jones, W. D. J. Am. Chem. Soc. 1999, 121, 10327.
(d) Kiplinger, J. L.; Richmond, T. G. J. Am. Chem. Soc. 1996, 118,
1805. (e) Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. Chem.
Rev. 1994, 94, 373.
(14) (a) Yim, M. B.; Wood, D. E. J. Am. Chem. Soc. 1976, 98, 2053.
(b) Shchegoleva, L. N.; Bilkis, I. I.; Schastnev, P. V. Chem. Phys. 1983,
82, 343. (c) Shoute, L. C. T.; Mittal, J. P. J. Phys. Chem. 1993, 97,
379−384.
(15) (a) Rossi, R. A. Acc. Chem. Res. 1982, 15, 164. (b) Freeman, P.
K.; Srinivasa, R. J. Org. Chem. 1987, 52, 252.
(16) (a) Selivanova, G. A.; Reshetov, A. V.; Beregovaya, I. V.;
Vasil’eva, N. V.; Bagryanskaya, I. Y.; Shteingarts, V. D. J. Fluorine Chem.
2012, 137, 64. (b) Laev, S. S.; Gurskaya, L. Y.; Selivanova, G. A.;
Beregovaya, I. V.; Shchegoleva, L. N.; Vasil’eva, N. V.; Shakirov, M.
M.; Shteingarts, V. D. Eur. J. Org. Chem. 2007, 2007, 306. (c) Jones, W.
D. Dalton Trans. 2003, 2003, 3991. (d) Krasnov, B. I.; Platonov, V. E.
Russ. J. Org. Chem. 2001, 37, 517. (e) Laev, S. S.; Shteingarts, V. D. J.
Fluorine Chem. 1998, 91, 21. (f) Krasnov, V. I.; Platonov, V. E.;
Beregovaya, I. V.; Shohegoleva, L. N. Tetrahedron 1997, 53, 1797.
(17) For an example of a photochemical defluorination of an
electron-rich monofluoroarene, see; Dichiarante, V.; Fagnoni, M.;
Albini, A. Green Chem. 2009, 11, 942.
(32) Lv, H.; Cai, Y.-B.; Zhang, J.-L. Angew. Chem., Int. Ed. 2013, 52,
3203.
(33) Andrews, R. S.; Becker, J. J.; Gagne,
2012, 51, 4140.
́
M. R. Angew. Chem., Int. Ed.
(34) (a) Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J.
Angew. Chem., Int. Ed. 2012, 51, 4144. (b) Neumann, M.; Zeitler, K.
Org. Lett. 2012, 14, 2658. (c) Lu, H.; Schmidt, M. A.; Jensen, K. F. Lab
Chip 2001, 1, 22.
(35) The structure of the radical anion is not planar. Consequently,
substitutions can destabilize the structure of the radical anion.
Destabilization of the radical anion would be expected to increase
the barrier to formation of the requisite radical anion. For a more
thorough study of the structure of the radical anion of hexafluor-
obenzene, see ref 14b.
(18) Laev, S. S.; Shteingarts, V. D. J. Fluorine Chem. 1999, 96, 175.
3005
dx.doi.org/10.1021/ja500031m | J. Am. Chem. Soc. 2014, 136, 3002−3005