10.1002/anie.201800385
Angewandte Chemie International Edition
COMMUNICATION
E. Dolja, T. Schmitz, B. Nubbemeyer, T. H. Luu, J. S. Dickschat, Angew.
Chem. Int. Ed. 2017, 56, 2776; d) J. S. Dickschat, J. Rinkel, P. Rabe, A.
Beyraghdar Kashkooli, H. J. Bouwmeester, Beilstein J. Org. Chem. 2017,
13, 1770; e) J. Rinkel, P. Rabe, X. Chen, T. G. Köllner, F. Chen, J. S.
Dickschat, Chem. Eur. J. 2017, 23, 10501; f) J. Rinkel, L. Lauterbach, J.
S. Dickschat, Angew. Chem. Int. Ed. 2017, 56, 16385.
(Figure S35). And as observed for 1, the enzymatic conversion of
(R)- and (S)-(1-13C,1-2H)GGPP with SaS gave evidence for a
stereoselective migration of the 1-pro-S hydrogen to C also for 3
(Figure S36).
None of the diterpenes identified from SaS or CAS were observed
in headspace extracts from A. albata, while spiroviolene was
reported in our previous study,[3c] suggesting that both enzymes
are not expressed in laboratory cultures. Alternatively, 1 may be
oxidised to an unknown product by a genetically clustered
cytochrome P450 (Figure S37 and Table S6).
In summary, we have identified the products of two DTSs from A.
albata, one of them exhibiting the unprecedented structure of
spiroalbatene. While the general principles of terpene
biosynthesis are well understood, the recently accumulating data
from isotopic labelling experiments, enzyme crystallisations,
enzyme mutagenesis and variation of incubation conditions lead
to more detailed insights that may allow for predictive approaches
how to get access to new terpenes in the future. The phylogenetic
tree of bacterial TSs (Figure S1) shows that the products of many
enzymes are known today, but there are also many dark areas for
continuing research on this interesting enzyme class.
[4]
[5]
K. Tomita, Y. Hoshino, T. Miyaki, Int. J. Syst. Bacteriol. 1993, 43, 297.
J. S. Dickschat, K. A. K. Pahirulzaman, P. Rabe, T. A. Klapschinski,
ChemBioChem 2014, 15, 810.
[6]
[7]
[8]
[9]
P. Rabe, L. Barra, J. Rinkel, R. Riclea, C. A. Citron, T. A. Klapschinski,
A. Janusko, J. S. Dickschat, Angew. Chem. Int. Ed. 2015, 54, 13448.
P. Rabe, J. Rinkel, B. Nubbemeyer, T. G. Köllner, F. Chen, J. S.
Dickschat, Angew. Chem. Int. Ed. 2016, 55, 15420.
a) I. Burkhardt, T. Siemon, M. Henrot, L. Studt, S. Rösler, B. Tudzynski,
M. Christmann, J. S. Dickschat, Angew. Chem. Int. Ed. 2016, 55, 8748.
a) J. Rinkel, P. Rabe, P. Garbeva, J. S. Dickschat, Angew. Chem. Int. Ed.
2016, 55, 13593; b) P. Rabe, T. Schmitz, J. S. Dickschat, Beilstein J. Org.
Chem. 2016, 12, 1839.
[10] a) J. W. Cornforth, R. H. Cornforth, G. Popjak, L. Yengoyan, J. Biol.
Chem. 1966, 241, 3970; b) H. V. Thulasiram, C. D. Poulter, J. Am. Chem.
Soc. 2006, 128, 15819.
[11] J. W. Cornforth, R. H. Cornforth, C. Donninger, G. Popjak, Proc. R. Soc.
London, Ser. B, 1966, 163, 492.
[12] R. Schwabe, I. Farkas, H. Pfander, Helv. Chim. Acta 1988, 71, 292.
[13] T. Kato, M. Suzuki, T. Kobayashi, B. P. Moore, J. Org. Chem. 1980, 45,
1126.
[14] L. C. Tarshis, M. Yan, C. D. Poulter, J. C. Sacchettini, Biochemistry 1994,
33, 10871.
Acknowledgements
[15] J. Jiang, X. He, D. E. Cane, Nat. Chem. Biol. 2007, 3, 711.
[16] D. W. Christianson, Chem. Rev. 2017, 117, 11570.
[17] a) M. Seemann, G. Z. Zhai, J. W. de Kraker, C. M. Paschall, D. W.
Christianson, D. E. Cane, J. Am. Chem. Soc. 2002, 124, 7681; b) M.
Seemann, G. Zhai, K. Umezawa, D. Cane, J. Am. Chem. Soc. 1999, 121,
591; c) P. Baer, P. Rabe, C. A. Citron, C. C. de Oliveira Mann, N.
Kaufmann, M. Groll, J. S. Dickschat, ChemBioChem 2014, 15, 213; d) P.
Baer, P. Rabe, K. Fischer, C. A. Citron, T. A. Klapschinski, M. Groll, J. S.
Dickschat, Angew. Chem. Int. Ed. 2014, 53, 7652.
This work was funded by the DFG (DI1536/7-1) and by the Fonds
der Chemischen Industrie with a PhD sholarship to JR. We thank
Paolina Garbeva (Wageningen) for Serratia plymuthica PRI-2C.
Keywords: biosynthesis • enzyme mechanisms • isotopes • soil
microorganisms • terpenes
[1]
[2]
[3]
J. S. Dickschat, Nat. Prod. Rep. 2016, 33, 87.
[18] I. Wahlberg, I. Wallin, C. Narbonne, T. Nishida, C. R. Enzell, Acta. Chem.
Scand. 1981, 35b, 65.
D. E. Cane, C. Pargellis, Arch. Biochem. Biophys. 1987, 254, 421.
a) A. Meguro, Y. Motoyoshi, K. Teramoto, S. Ueda, Y. Totsuka, Y. Ando,
T. Tomita, S.-Y. Kim, T. Kimura, M. Igarashi, R. Sawa, T. Shinada, M.
Nishiyama, T. Kuzuyama, Angew. Chem. Int. Ed. 2015, 54, 4353; b) Y.
Yamada, T. Kuzuyama, M. Komatsu, K. Shin-ya, S. Omura, D. E. Cane,
H. Ikeda, Proc. Natl. Acad. Sci. USA 2015, 112, 857; c) P. Rabe, J. Rinkel,
[19] a) P. Rabe, T. Schmitz, J. S. Dickschat, Beilstein J. Org. Chem. 2016,
12, 1839; b) L. Ding, H. Goerls, K. Dornblut, W. Lin, A. Maier, H.-H. Fiebig,
C. Hertweck, J. Nat. Prod. 2015, 78, 2963.
This article is protected by copyright. All rights reserved.