ChemComm
Communication
three-component Strecker reactions. Meanwhile, 1 has also been
demonstrated to display promising visible-light-driven bimetallic
catalytic activity in degrading various organic dyes. This work paves
the way to the solvothermal synthesis of efficient heterogeneous
multifunctional materials which could catalyze transformations
through a bimetallic pathway.
We acknowledge the National Basic Research Program of China
(973 Programs, 2012CB821706 & 2013CB834803), the National
Natural Science Foundation for Distinguished Young Scholars of
China (20825102), the National Natural Science Foundation of
China (91222202, 21171114, 21101103) and Shantou University.
Notes and references
1 L. Que Jr and W. B. Tolman, Nature, 2008, 455, 333.
2 (a) D. M. Alonso, S. G. Wettstein and J. A. Dumesic, Chem. Soc. Rev.,
2012, 41, 8075; (b) M. Delferro and T. J. Marks, Chem. Rev., 2011,
111, 2450.
3 M. J. Climent, A. Corma and S. Iborra, Chem. Rev., 2011, 111, 1072.
4 (a) T. R. Cook, Y.-R. Zheng and P. J. Stang, Chem. Rev., 2013,
113, 734; (b) J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt,
S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450.
5 (a) F. Vermoortele, R. Ameloot, A. Vimont, C. Serrec and D. D. Vos,
Chem. Commun., 2011, 47, 1521; (b) P. Wu, J. Wang, Y. Li, C. He, Z. Xie
and C. Duan, Adv. Funct. Mater., 2011, 21, 2788; (c) B. Li, Y. Zhang,
D. Ma, L. Li, G. Li, G. Li, Z. Shi and S. Feng, Chem. Commun., 2012,
48, 6151; (d) J. Park, J.-R. Li, Y.-P. Chen, J. Yu, A. Yakovenko,
Z. U. Wang, L.-B. Sun, P. B. Balbuena and H.-C. Zhou, Chem. Commun.,
2012, 48, 9995; (e) R. Srirambalaji, S. Hong, R. Natarajan, M. Yoon,
R. Hota, Y. Kim, Y. H. Ko and K. Kim, Chem. Commun., 2012, 48, 11650.
6 (a) S. Kitagawa, R. Kitaura and S.-i. Noro, Angew. Chem., Int. Ed.,
2004, 43, 2334; (b) J. L. C. Rowsell and O. M. Yaghi, Angew. Chem.,
Int. Ed., 2005, 44, 4670.
Fig. 2 Photocatalytic degradation of organic dyes catalyzed by 1 upon
visible-light illumination. (a) Photographs of different dye solutions and
concentrations in terms of absorbance changes of dyes as a function of
time [blue pillar: methylene blue (MB); red pillar: rhodamine (RhB); orange
pillar: methyl orange (MO)]. (b) Time-dependent concentration changes
and (c) % degradation rates of MB under different conditions [1/visible-light
illumination]: (a) [ꢁ/ꢁ]; (b) [ꢁ/+]; (c) [+/ꢁ]; (d) [+/+].
To further elucidate the bimetallic catalytic nature of 1 which
contains two kinds of metal-based catalytic sites, catalytic degrada-
tion experiments of various organic dyes in the presence or absence
of visible light have been carried out. The 1-catalyzed (photo-)-
degradation of an aqueous solution (12 mg Lꢁ1) of methylene blue
(MB) has been first examined by means of UV-vis spectrophotometry
(Fig. S5, ESI†). In the absence of visible-light illumination, 65% of
MB is decomposed in the solution (Fig. 2b and c). We reckon that
the CuII ions in 1 is crucial in decomposing MB, since various
studies have shown that CuII could play a major catalytic role in
various oxidation reactions.18 It should be noted that up to 96% of
MB could be decomposed when the reaction was performed under
visible-light illumination (Fig. 2b and c). We reckon that the
enhanced degradation of MB is due to the cooperative decomposi-
tion achieved by photoactive Cu(I) moieties in 1.19 Apart from MB,
7 (a) A. Arnanz, M. Pintado-Sierra, A. Corma, M. Iglesias and
´
F. Sanchez, Adv. Synth. Catal., 2012, 354, 1347; (b) Y. Pan, B. Yuan,
Y. Li and D. He, Chem. Commun., 2010, 46, 2280; (c) F. G. Cirujano,
´
F. X. Llabres i Xamena and A. Corma, Dalton Trans., 2012, 41, 4249.
8 S. M. Cohen, Chem. Rev., 2012, 112, 970.
9 (a) M. E. Kosal, J.-H. Chou, S. R. Wilson and K. S. Suslick, Nat.
Mater., 2002, 1, 118; (b) A. Hu, H. L. Ngo and W. Lin, Angew. Chem.,
Int. Ed., 2003, 42, 6000; (c) S. Kitagawa, S.-i. Noro and T. Nakamura,
Chem. Commun., 2006, 701; (d) W.-X. Ni, M. Li, X.-P. Zhou, Z. Li,
X.-C. Huang and D. Li, Chem. Commun., 2007, 3479; (e) W.-X. Ni,
M. Li, S.-Z. Zhan, J.-Z. Hou and D. Li, Inorg. Chem., 2009, 48, 1433.
10 (a) S.-H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp and T. E. Albrecht-
Schmitt, Chem. Commun., 2006, 2563; (b) F. Song, C. Wang,
J. M. Falkowski, L. Ma and W. Lin, J. Am. Chem. Soc., 2010, 132, 15390.
11 (a) M. Meldal and C. W. Tornøe, Chem. Rev., 2008, 108, 2952; (b) T. Yang,
H. Cui, C. Zhang, L. Zhang and C.-Y. Su, ChemCatChem, 2013, 5, 3131.
the photodegradation of other organic dyes including rhodamine B 12 Y. Kang, F. Wang, J. Zhang and X. Bu, J. Am. Chem. Soc., 2012, 134, 17881.
13 (a) R. Peng, M. Li and D. Li, Coord. Chem. Rev., 2010, 254, 1; (b) S.-Z.
(RhB) and methyl orange (MO) by 1 have also been examined.
Similar high photocatalytic efficiencies (>95%) were observed in
Zhan, M. Li, X.-P. Zhou, J.-H. Wang, J.-R. Yang and D. Li, Chem.
Commun., 2011, 47, 12441.
¨
both cases after a B50 min light illumination (Fig. 2a and 14 (a) H. Groger, Chem. Rev., 2003, 103, 2795; (b) M. Shibasaki and
M. Kanai, Chem. Rev., 2008, 108, 2853; (c) S. J. Zuend, M. P. Coughlin,
Fig. S6–S9, ESI†). Furthermore, the stability and recoverability of
M. P. Lalonde and E. N. Jacobsen, Nature, 2009, 461, 968; (d) J. Wang,
1 have also been examined. After repeating the photocatalytic
X. Liu and X. Feng, Chem. Rev., 2011, 111, 6947.
degradation of MB three times, the solid residues left in the 15 (a) Y. Huang, T. Liu, J. Lin, J. Lu¨, Z. Lin and R. Cao, Inorg. Chem.,
2011, 50, 2191; (b) A. Bhunia, M. A. Gotthardt, M. Yadav, M. T. Gamer,
reaction mixture retained a similar PXRD pattern as that of the
¨
A. Eichofer, W. Kleist and P. W. Roesky, Chem.–Eur. J., 2013, 19, 1986.
pristine solid of 1. As expected, these residues also displayed a
similar photocatalytic efficiency as that of 1 (Fig. S10 and S11, ESI†).
In summary, this work has described a feasible approach
in preparing a copper(I)/copper(II)–salen coordination polymer (1)
´
16 (a) T. Blasco, M. Boronat, P. Concepcion, A. Corma, D. Law and
J. A. Vidal-Moya, Angew. Chem., Int. Ed., 2007, 46, 3938; (b) S. Handa,
V. Gnanadesikan, S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc.,
2010, 132, 4925.
17 A. Hu, H. L. Ngo and W. Lin, J. Am. Chem. Soc., 2003, 125, 11490.
having high bimetallic catalytic activity through the incorporation of 18 (a) J. Ackermann, F. Meyer, E. Kaifer and H. Pritzkow, Chem.–Eur. J.,
2002, 8, 247; (b) S. Afzal, W. A. Daoud and S. J. Langford, ACS Appl.
Mater. Interfaces, 2013, 5, 4753.
19 T. Wen, D.-X. Zhang, J. Liu, R. Lin and J. Zhang, Chem. Commun.,
two different metal-based catalytic moieties into a single framework.
The CP 1 could be used as an efficient heterogeneous multifunc-
tional catalyst for the synthesis of a-aminonitriles via asymmetric
2013, 49, 5660.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 2295--2297 | 2297