Page 3 of 4
ChemComm
CREATED USING THE RSC CHEMCOMM TEMPLATE - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS
DOI: 10.1039/C4CC00394B
Figueroa, R.; Hsung, R. P. Heterocycles 2007, 74, 553. (c) Li, H.;
Hsung, R. P. Org. Lett. 2009, 11, 4462. (d) Zhang, X.; Li, H.; You,
L.; Tang, Y.; Hsung, R. P. Adv. Synth. Catal. 2006, 348, 2437. (e)
Zhang, X.; Hsung, R. P.; Li, H. Chem. Commun. 2007, 2420. (f)
Kim, J. Y.; Kim, S. H.; Chang, S. Tetrahedron Lett. 2008, 49, 1745.
(g) Zhang, X.; Hsung, R. P.; Li, H.; Zhang, Y.; Johnson, W. L.;
Figueroa, R. Org. Lett. 2008, 10, 3477. [4+2] Cycloadditions: (h)
Martinez-Esperon, M. F.; Rodriguez, D.; Castedo, L.; Saa, C. Org.
Lett. 2005, 7, 2213. [2+2+1] Cycloadditions: (i) Witulski, B.;
Goessmann, M. Synlett 2000, 1793. [2+2+2] Cycloadditions: (j)
Witulski, B.; Stengel, T. Angew. Chem. Int. Ed. 1999, 38, 2426. (k)
Witulski, B.; Stengel, T.; Fernandez-Hernandez, J. Chem. Commun.
2000, 1965. (l) Witulski, B.; Alayrac, C. Angew. Chem. Int. Ed.
2002, 41, 3281. (m) Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew.
Chem. Int. Ed. 2012, 51, 113.
(a) Marion, F.; Coulomb, J.; Courillon, C.; Fensterbank, L.;
Malacria, M. Org. Lett. 2004, 6, 1509. (b) Marion, F.; Coulomb, J.;
Servais, A.; Courillon, C.; Fensterbank, L.; Malacria, M.
Tetrahedron 2006, 62, 3856. (c) Hashmi, A. S.; Rudolph, M.; Bats,
J.; Frey, W.; Rominger, F.; Oeser, T. Chem. Eur. J. 2008, 14, 6672.
(d) Couty, S.; Meyer, C.; Cossy, J. Tetrahedron 2009, 65, 1809.
Homocoupling reactions: (a) Rodriguez, D.; Castedo, L.; Saa, C.
Synlett 2004, 377. Negishi cross-couplings: (b) Rodriguez, D.;
Castedo, L.; Saa, C. Synlett 2004, 783. (c) Martinez-Esperon, M. F.;
Rodriguez, D.; Castedo, L.; Saa, C. Tetrahedron 2006, 62, 3843.
Sonogashira couplings: (d) Tracey, M. R.; Zhang, Y.; Frederick, M.
O.; Mulder, J. A.; Hsung, R. P. Org. Lett. 2004, 6, 2209. (e)
Dooleweerdt, K.; Ruhland, T.; Skrydstrup, T. Org. Lett. 2009, 11,
221. Heck reactions: (f) Couty, S.; Liegault, B.; Meyer, C.; Cossy, J.
Org. Lett. 2004, 6, 2511. (g) Couty, S.; Liegault, B.; Meyer, C.;
Cossy, J. Tetrahedron 2006, 62, 3882.
Figure
2 Crystal structures of 13 (left) and 20 (right). Selected
crystallographic separations [Å] for 13: C(sp)-C(sp): 1.191, N-C(sp) 1.358.
20: C(sp)-C(sp): 1.191, N-C(sp) 1.359.
We then investigated if the presence of a chiral center in the
substrate is tolerated. In fact, the Zn(II)-(-)-NME catalyzed
reaction between (R)-citronellal and ynamide 7, gave 28 in 88%
yield and 98% de within 3 hours, Scheme 2. The same aldehyde
reacted more slowly and with lower diastereoselectivtiy when
(+)-NME was used as chiral ligand under otherwise identical
conditions. As a result, we isolated 29 in only 56% yield and
73% ee. The reduced yield is mostly a result of slow conversion
and 25% of the unreacted ynamide were recovered after 3 hours.
These results show that the sense of asymmetric induction is
overwhelmingly controlled by the chiral catalyst while the
chirality in the substrate may still have a distinctive effect on the
reaction outcome. The Zn(II)-(-)-NME catalyzed reaction with
the (R)-enantiomer of citronellal represents a matched pair
whereas the reduced reaction rate and the lower asymmetric
induction observed with Zn(II)-(+)-NME is in accordance with a
mismatched pair.17
6
7
8
9
Saito, N.; Sato, Y.; Mori, M. Org. Lett. 2002, 4, 803.
Banerjee, B.; Litvinov, D. N.; Kang, J.; Bettale, J. D.; Castle, S. L.
Org. Lett. 2010, 12, 2650.
10 (a) Tanaka, R.; Hirano, S.; Urabe, H.; Sato, F. Org. Lett. 2003, 5, 67.
(b) Tanaka, R.; Yuza, A,; Watai, Y.; Suzuki, D.; Takayama, Y.;
Sato, F.; Urabe, M. J. Am. Chem. Soc. 2005, 127, 7774. (c) Tanaka,
D.; Sato, Y.; Mori, M. J. Am. Chem. Soc. 2007, 129, 7730.
11 Other examples of important reactions of terminal ynamides:
Hydroboration: (a) Witulski, B.; Buschmann, N.; Bergstraesser, U.
Tetrahedron 2000, 56, 8473. Oxoarylations and cyclizations: (b)
Bhunia, S.; Chang, C.-J.; Liu, R.-S. Org. Lett. 2012, 14, 5522. (c)
Yang, L.-Q.; Wang, K.-B.; Li, C.-Y. Eur. J. Org. Chem. 2013, 2775.
(d) Couty, S.; Meyer, C.; Cossy, J. Synlett 2007, 2819. (e) Al-
Rashid, Z. F.; Hsung, R. P. Org. Lett. 2008, 10, 661. Nucleophilic
alkylations with lithiated ynamides: (f) Frederick, M. O.; Mulder, J.
A.; Tracey, M. R.; Hsung, R. P.; Huang, J.; Kurtz, K. C. M.; Shen,
L.; Douglas, C. J. J. Am. Chem. Soc. 2003, 125, 2368.
Scheme 2 Diastereoselective ynamide addition to citronellal.
In summary, we have developed the first catalytic asymmetric
addition of ynamides to aldehydes. The zinc catalyzed method is
operationally simple, applicable to aliphatic and aromatic
aldehydes, proceeds under mild conditions at room temperature,
and provides practical access to a variety of N-substituted
propargylic alcohols that are obtained in high yields and ee’s.
The use of apolar solvent mixtures proved essential to avoid
product racemization and to achieve high ee’s without
compromising conversion. The unique reactivity and diversity of
the polar ynamide functionality bear remarkable potential for
asymmetric synthesis. The introduction of terminal ynamides to
catalytic enantioselective additions described herein is expected
to provide unprecedented entries to complex chiral building
blocks.
12 You, L.; Al-Rashid, Z. F.; Figueroa, R.; Ghosh, S. K.; Ti, G.; Lu, T.;
Hsung, R. P. Synlett 2007, 1656.
13 (a) Joshi, R.V.; Xu, Z.-Q.; Ksebati, M. B.; Kessel, D.; Corbett, T.
H.; Drach, J. C.; Zemlicka, J. J. Chem. Soc. Perkin Trans. 1 1994,
10, 1089. (b) Rodriguez, D.; Castedo, L.; Saa, C. Synlett 2007, 1963.
(c) Egi, M.; Yamaguchi, Y.; Fujiwara, N.; Akai, S. Org. Lett. 2008,
10, 1867. (d) Wang, X.-N.; Winston-McPherson, G. N.; Walton, M.
C.; Zhang, Y.; Hsung, R. P.; DeKorver, K. A. J. Org. Chem. 2013,
78, 6233. (e) Wang, X.-N.; Hsung, R. P.; Rui, Q.; Fox, S. K.; Lv,
M.-C. Org. Lett. 2013, 15, 2514.
14 We generally prefer using 4-bromobenzaldehyde over benzaldehyde
during initial screening due to its superior shelf life. The reaction did
not occur in the absence of a transition metal or under conditions
typically used for nucleophilic additions with enamides or
enecarbamates. For stereoselective C-C bond formations with
enamides and enecarbamates see (a) M. Ryosuke, S. Kobayashi Acc.
Chem. Res. 2008, 41, 292. For examples of catalytic asymmetric
addition reactions with terminal alkynes: (b) Anand, N. K; Carreira,
E. M. J. Am. Chem. Soc. 2001, 123, 9687. (c) Li, X.; Lu, G.; Kwok,
W. H.; Chan, A. S. C. J. Am. Chem. Soc. 2002, 124, 12636. (d)
Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. J. Am. Chem.
Soc. 2005, 127, 13760. (e) Trost, B. M.; Weiss, A. H.; von
Wangelin, A. J. J. Am. Chem. Soc. 2006, 128, 8. (f) Gao, G.; Wang,
Q.; Yu, X.-Q.; Xie, R.-G.; Pu, L. Angew. Chem. Int. Ed. 2006, 45,
122. (g) Wolf, C.; Liu, S. J. Am. Chem. Soc. 2006, 128, 10996.
15 Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.
16 The decrease of the ee of 13 was found to coincide with the
formation of the starting materials.
We gratefully acknowledge financial support from the
National Institutes of Health (GM106260).
Notes and references
1
For excellent reviews, see: (a) Zificsak, C. A.; Mulder, J. A.; Hsung,
R. P.; Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001, 57, 7575. (b)
Evano, G.; Coste, A.; Jouvin, K. Angew. Chem. Int. Ed. 2010, 49,
2840. (c) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.;
Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064. (d) Wang, X.-
N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.;
Hsung, R. P. Acc. Chem. Res. 2013, DOI: 10.1021/ar400193g.
Witulski, B.; Goessmann, M. Chem. Commun. 1999, 1879.
Bruckner, D. Tetrahedron 2006, 62, 3809.
2
3
4
5
Rodriguez, D.; Castedo, L.; Saa, C. Synlett 2007, 1963.
[3+2] Cycloadditions: (a) IJsselstijn, M.; Cintrat, J.-C. Tetrahedron
2006, 62, 3837. (b) Li, H.; You, L.; Zhang, X.; Johnson, W. L.;
17 Wolf, C. (ed.) Dynamic Stereochemistry of Chiral Compounds, RSC
Publishing, Cambridge, UK, 2008, 194.
NO TEXT BELOW THIS LINE
CHEM. COMMUN., 2002, 1–XX
3