Organic Letters
Letter
514. (h) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698−1712.
(i) Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879−2932.
(2) (a) Nakamura, A.; Nakada, M. Synthesis 2013, 45, 1421−1251.
(b) Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am.
Chem. Soc. 2006, 128, 9032−9033. (c) Covell, D. J.; Vermeulen, N. A.;
Labenz, N. A.; White, M. C. Angew. Chem., Int. Ed. 2006, 118, 8397−
8400. (d) Ginotra, S. K.; Singh, V. K. Org. Biomol. Chem. 2006, 4, 4370−
4374. (e) Fraunhoffer, K. J.; Bachovchin, D. A.; White, M. C. Org. Lett.
2005, 7, 223−226. (f) Zhou, J.; Tang, Y. Chem. Soc. Rev. 2005, 34, 664−
676. (g) Andrus, M. B.; Asgari, D. Tetrahedron 2000, 56, 5775−5780.
(3) Weidmann, V.; Maison, W. Synthesis 2013, 45, 2201−2221.
(4) (a) Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2006, 128,
15076−15077. (b) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White,
M. C. J. Am. Chem. Soc. 2005, 127, 6970−6971. (c) Chen, M. S.; White,
M. C. J. Am. Chem. Soc. 2004, 126, 1346−1347.
Extension of the study to the allylic oxidation of of β-pinene
and indane (Scheme 5) provided alcohol 43 and ketone 44,
respectively, with excellent yields.
Scheme 5. Oxidation of Alkenes in the Presence of L-
a b
,
Proline
(5) (a) McLaughlin, E. C.; Choi, H.; Wang, K.; Chiou, G.; Doyle, M. P.
J. Org. Chem. 2009, 74, 730−738. (b) Choi, H.; Doyle, M. P. Org. Lett.
2007, 9, 5349−5352. (c) Catino, A. J.; Forslund, R. E.; Doyle, M. P. J.
Am. Chem. Soc. 2004, 126, 13622−13623.
a
All reactions were carried out using cyclohexene 1 (4.0 mmol) and β-
pinene 20, (+)-valencene 21, and indane 22 (1.0 mmol), L-proline 3g
(1.0 mmol), TBHP (6.0 mmol for 1 and 20 and 4.5 mmol for 21 and
22), Cu−Al Ox (60 mg; 15 mol % [Cu] for 1, 60 mol % [Cu] for 20,
(6) (a) Kharasch, M. S.; Sosnovsky, G.; Yang, N. C. J. Am. Chem. Soc.
1959, 81, 5819−5824. (b) Kharasch, M. S.; Sosnovsky, G. J. Am. Chem.
Soc. 1958, 80, 756.
b
21, and 22), refluxing CH3CN (4 mL), 82 °C, 24 h. GC yields
(isolated yield).
(7) (a) Shi, E.; Shao, Y.; Chen, S.; Hu, H.; Liu, Z.; Zhang, J.; Wan, X.
Org. Lett. 2012, 14, 3384−3387. (b) Akermark, B.; Magnus Larsson, E.;
Oslob, J. D. J. Org. Chem. 1994, 59, 5729−5733.
To verify the uniqueness of L-proline in this context, an amino
acid and amine series were also tested, leading to poorer results
compared to L-proline (see the Supporting Information).
In summary, we have demonstrated the capacity of Cu−Al Ox
to catalyze the allylic oxidation of cyclic alkenes. The reactions
are technically easy to perform and provide synthetically useful
yields. In addition, DoE has revealed itself as a valuable tool for
the optimization of these processes. The use of Cu−Al Ox
discloses a promising route to the allylic oxidation of valuable
alkenes. Its preparation is amenable to fine-tuning, and its
chemical properties can thus be modulated. Its catalytic behavior
in other reactions is currently under study.
(8) (a) Marín-Barrios, R.; Guerra, F. M.; García-Cabeza, A. L.;
Moreno-Dorado, F. J.; Massanet, G. M. Tetrahedron 2012, 68, 1105−
1108. (b) Andrus, M. B.; Lashley, J. C. Tetrahedron 2002, 58, 845−866.
(c) Eames, J.; Watkinson, W. Angew. Chem., Int. Ed. 2001, 40, 3567−
3571.
(9) García-Cabeza, A. L.; Marín-Barrios, R.; Azarken, R.; Moreno-
Dorado, F. J.; Ortega, M. J.; Vidal, H.; Gatica, J. M.; Massanet, G. M.;
Guerra, F. M. Eur. J. Org. Chem. 2013, 8307−8314.
(10) Le Bras, J.; Muzart, J. Tetrahedron: Asymetry 2003, 14, 1911−
1915.
(11) Beckwith, A. L. J.; Zavitsas, A. A. J. Am. Chem. Soc. 1986, 108,
8230−8234.
(12) Mayoral, J. A.; Rodríguez-Rodríguez, S.; Salvatella, L. Chem.
Eur. J. 2008, 14, 9274−9285.
ASSOCIATED CONTENT
* Supporting Information
(13) Zhang, G.; Han, X.; Luan, Y.; Wang, Y.; Wen, X.; Ding, C. Chem.
Commun. 2013, 72, 7908−7910.
■
S
(14) Hoover, J. M.; Ryland, B. L.; Stahl, S. S. J. Am. Chem. Soc. 2013,
135, 2357−2367.
Experimental procedures, DoE optimization details, compound
1
characterization, and H/13C NMR reprints. This material is
(15) For a general introduction to experimental design in chemistry,
see: (a) Leardy, R. Anal. Quim. Acta 2009, 652, 161−172. (b) Carlson,
R.; Carlson, J. E. Design and Optimization in Organic Synthesis, in Data
Handling in Science and Technology, Elsevier, Amsterdam, 2005.
(c) Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.;
Escaleira, L. A. Talanta 2008, 76, 965−977. (d) Araujo, P. W.; Brereton,
R. G. TrAC, Trends Anal. Chem. 1996, 15, 26−31. (e) Araujo, P. W.;
Brereton, R. G. TrAC, Trends Anal. Chem. 1996, 15, 63−70.
(16) (a) Neuenschwander, U.; Jensen, K. F. Ind. Eng. Chem. Res. 2014,
53, 601−608. (b) Wilson, C. W.; Shaw, P. E. J. Agric. Food. Chem. 1978,
26, 1430−1432.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This research was supported by Junta de Andalucıa (FQM-169).
The authors are thankful to the Servicios Centrales de Ciencia y
■
́
́
́
Tecnologıa (SCCYT) of the University of Cadiz. A.L.G.-C. and
R.M.-B. thank the Spanish Ministry of Education, Culture and
Sport for a fellowship.
REFERENCES
■
(1) (a) White, M. C. Synlett 2012, 23, 2746−2748. (b) Wencel-Delord,
J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740−4761.
̈
(c) Baran, P. S.; Newhouse, T. Angew. Chem., Int. Ed. 2011, 50, 3362−
3374. (d) Bergman, R. G. Nature 2007, 446, 391−393. (e) Kalyani, D.;
Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127,
7330−7331. (f) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345,
1077−1101. (g) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507−
1601
dx.doi.org/10.1021/ol500198c | Org. Lett. 2014, 16, 1598−1601