Organic Letters
Letter
to form NiII complex VII. After the reductive elimination and
ligand-exchange process, product 3 is formed.
́
(d) Chinchilla, R.; Najera, C. Chem. Soc. Rev. 2011, 40, 5084−5121.
(e) Brand, J. P.; Waser, J. Chem. Soc. Rev. 2012, 41, 4165−4179. For
selected recent examples, see: (f) Lee, J. T. D.; Zhao, Y. Angew. Chem.,
Int. Ed. 2016, 55, 13872−13876. (g) Wang, P.; Li, G.-C.; Jain, P.;
Farmer, M. E.; He, J.; Shen, P.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138,
14092−14099. (h) Wang, Z.-X.; Bai, X.-Y.; Yao, H.-C.; Li, B.-J. J. Am.
Chem. Soc. 2016, 138, 14872−14875. (i) Li, R.-Z.; Tang, H.; Yang, K.
R.; Wan, L.-Q.; Zhang, X.; Liu, J.; Fu, Z.; Niu, D. Angew. Chem., Int. Ed.
2017, 56, 7213−7217. (j) Huang, L.; Olivares, A. M.; Weix, D. J. Angew.
Chem., Int. Ed. 2017, 56, 11901−11905. (k) Smith, J. M.; Qin, T.;
Merchant, R. R.; Edwards, J. T.; Malins, L. R.; Liu, Z.; Che, G.; Shen, Z.;
Shaw, S. A.; Eastgate, M. D.; Baran, P. S. Angew. Chem., Int. Ed. 2017, 56,
11906−11910. (l) Zhang, K.; Lu, L.-Q.; Yao, S.; Chen, J.-R.; Shi, D.-Q.;
Xiao, W.-J. J. Am. Chem. Soc. 2017, 139, 12847−12854. (m) Bai, X.-Y.;
Zhang, W.-W.; Li, Q.; Li, B.-J. J. Am. Chem. Soc. 2018, 140, 506−514.
(n) Chen, S.; Zheng, Y.; Cui, T.; Meggers, E.; Houk, K. N. J. Am. Chem.
Soc. 2018, 140, 5146−5152. (o) Tang, S.; Liu, Y.; Gao, X.; Wang, P.;
Huang, P.; Lei, A. J. Am. Chem. Soc. 2018, 140, 6006−6013. (p) Fu, L.;
Zhou, S.; Wan, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2018, 140,
10965−10969. (q) Fu, Z.; Deng, N.; Su, S.-N.; Li, H.; Li, R.-Z.; Zhang,
X.; Liu, J.; Niu, D. Angew. Chem., Int. Ed. 2018, 57, 15217−15221.
(r) Xiong, P.; Long, H.; Song, J.; Wang, Y.; Li, J.-F.; Xu, H.-C. J. Am.
Chem. Soc. 2018, 140, 16387−16391. (s) Han, Y.-Q.; Ding, Y.; Zhou,
T.; Yan, S.-Y.; Song, H.; Shi, B.-F. J. Am. Chem. Soc. 2019, 141, 4558−
4563. (t) Wang, Z.-X.; Li, B.-J. J. Am. Chem. Soc. 2019, 141, 9312−9320.
(u) Ping, Y.; Wang, K.; Pan, Q.; Ding, Z.; Zhou, Z.; Guo, Y.; Kong, W.
ACS Catal. 2019, 9, 7335−7342.
In conclusion, we have developed a nickel-catalyzed reductive
1,2-dialkynylation of alkenes using 8-aminoquinoline as the
directing group under mild conditions with sequential formation
of two C(sp)−C(sp3) bonds. This reaction provided an efficient
method to access diverse synthetically flexible 1,5-diynes. The
more detailed mechanistic investigations of this reaction as well
as the further expansion of the nickel-catalyzed reductive
difunctionalization of alkene with novel electrophiles are
currently underway in our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experiment procedures, detailed reaction optimization,
compound characterization, and NMR spectra (PDF)
Accession Codes
CCDC 1936009 and 1940841 contain the supplementary
crystallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: + 44 1223 336033.
(4) For selected reviews of diyne application in methodology, see:
(a) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901−2916.
(b) Asiri, A. M.; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 4471−4503.
AUTHOR INFORMATION
Corresponding Authors
́
́
(c) Tejedor, D.; Lopez-Tosco, S.; Mendez-Abt, G.; Cotos, L.; García-
Tellado, F. Acc. Chem. Res. 2016, 49, 703−713. (d) Xuan, J.; Studer, A.
Chem. Soc. Rev. 2017, 46, 4329−4346. (e) Pasini, D.; Takeuchi, D.
Chem. Rev. 2018, 118, 8983−9057.
■
ORCID
(5) For selected examples of diyne application in the nature product
total synthesis, see: (a) Sato, Y.; Tamura, T.; Mori, M. Angew. Chem.,
Int. Ed. 2004, 43, 2436−2440. (b) Trost, B. M.; Chung, C. K.;
Pinkerton, A. B. Angew. Chem., Int. Ed. 2004, 43, 4327−4329. (c) Yue,
G.; Zhang, Y.; Fang, L.; Li, C.; Luo, T.; Yang, Z. Angew. Chem., Int. Ed.
2014, 53, 1837−1840. (d) Goh, S. S.; Chaubet, G.; Gockel, B.;
Cordonnier, M.-C. A.; Baars, H.; Phillips, A. W.; Anderson, E. A. Angew.
Chem., Int. Ed. 2015, 54, 12618−12621. (e) Matsuoka, J.; Matsuda, Y.;
Kawada, Y.; Oishi, S.; Ohno, H. Angew. Chem., Int. Ed. 2017, 56, 7444−
7448.
(6) For selected examples, see: (a) Dai, W.; Fong, K. C.; Danjo, H.;
Nishimoto, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 779−781.
(b) Montel, F.; Beaudegnies, R.; Kessabi, J.; Martin, B.; Muller, E.;
Wendeborn, S.; Jung, P. M. J. Org. Lett. 2006, 8, 1905−1908.
(c) Campos, C. A.; Gianino, J. B.; Pinkerton, D. M.; Ashfeld, B. L. Org.
Lett. 2011, 13, 5680−5683. (d) Paioti, P. H. S.; Abboud, K. A.; Aponick,
A. J. Am. Chem. Soc. 2016, 138, 2150−2153. (e) Guo, W.-H.; Luo, Z.-J.;
Zeng, W.; Zhang, X. ACS Catal. 2017, 7, 896−901.
(7) For selected reviews of the dicarbofunctionalization of alkenes,
see: (a) Dhungana, R. K.; KC, S.; Basnet, P.; Giri, R. Chem. Rec. 2018,
18, 1314−1340. (b) Giri, R.; KC, S. J. Org. Chem. 2018, 83, 3013−3022.
For selected recent examples of the dicarbofunctionalization of alkenes,
see: (c) Li, W.; Boon, J. K.; Zhao, Y. Chem. Sci. 2018, 9, 600−607.
(d) Derosa, J.; van der Puyl, V. A.; Tran, V. T.; Liu, M.; Engle, K. M.
Chem. Sci. 2018, 9, 5278−5283. (e) Basnet, P.; Dhungana, R. K.; Thapa,
S.; Shrestha, B.; KC, S.; Sears, J. M.; Giri, R. J. Am. Chem. Soc. 2018, 140,
7782−7786. (f) KC, S.; Dhungana, R. K.; Shrestha, B.; Thapa, S.;
Khanal, N.; Basnet, P.; Lebrun, R. W.; Giri, R. J. Am. Chem. Soc. 2018,
140, 9801−9805. (g) Basnet, P.; KC, S.; Dhungana, R. K.; Shrestha, B.;
Boyle, T. J.; Giri, R. J. Am. Chem. Soc. 2018, 140, 15586−15590.
(h) Derosa, J.; Kleinmans, R.; Tran, V. T.; Karunananda, M. K.;
Wisniewski, S. R.; Eastgate, M. D.; Engle, K. M. J. Am. Chem. Soc. 2018,
140, 17878−17883. (i) Wu, L.; Wang, F.; Chen, P.; Liu, G. J. Am. Chem.
Soc. 2019, 141, 1887−1892. (j) Xu, C.; Yang, Z.-F.; An, L.; Zhang, X.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge generous financial support from the National
Natural Science Foundation of China (NSFC21572272), the
Foundation of The Open Project of State Key Laboratory of
Natural Medicines (SKLNMZZCX201818), and the Innova-
tion Team of “the Double-First Class” Disciplines
(CPU2018GY35 and CPU2018GY04).
REFERENCES
■
(1) (a) Stang, P. J.; Diederich, F. Modern Acetylene Chemistry; Wiley-
VCH: Weinheim, Germany, 1995. (b) Diederich, F.; Stang, P. J.;
Tykwinski, R. R. Acetylene Chemistry: Chemistry, Biology, and Material
Science; Wiley-VCH: Weinheim, Germany, 2005. (c) Trost, B. M.; Li,
C.-J. Modern Alkyne Chemistry: Catalytic and Atom-Economic Trans-
formations; Wiley-VCH: New York, 2014.
(2) For selected reviews, see: (a) Meldal, M.; Tornøe, C. W. Chem.
Rev. 2008, 108, 2952−3015. (b) Willis, M. C. Chem. Rev. 2010, 110,
725−748. (c) Trotus,̧ I.-T.; Zimmermann, T.; Schuth, F. Chem. Rev.
̈
́
2014, 114, 1761−1782. (d) Chinchilla, R.; Najera, C. Chem. Rev. 2014,
114, 1783−1826. (e) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114,
8613−8661.
(3) For selected reviews, see: (a) Negishi, E.; Anastasia, L. Chem. Rev.
́
2003, 103, 1979−2018. (b) Guillarme, S.; Ple, K.; Banchet, A.; Liard,
A.; Haudrechy, A. Chem. Rev. 2006, 106, 2355−2403. (c) Cho, S. H.;
Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068−5083.
E
Org. Lett. XXXX, XXX, XXX−XXX