Inversion Phenomenon in β-Cyclodextrin Dimers
carbonate (6.8 g, 21 mmol, 4 equiv.) were dissolved in acetonitrile
(100 mL) and the resulting mixture was stirred overnight under ni-
trogen at 85 °C. The crude product was extracted with ethyl acetate
and washed with saturated aqueous sodium hydrogen carbonate.
After evaporation of ethyl acetate, the product was purified by
chromatography (heptane/dichloromethane, 5:5 to 0:5) to give 9
(950 mg, 37%) as a pale-yellow powder. Rf = 0.52 (CH2Cl2). 1H
NMR (300 MHz, CDCl3, 25 °C): δ = 7.40 [d, J = 8.7 Hz, 2 H,
CH(4)], 6.83 [d, J = 8.7 Hz, 2 H, CH(5)], 4.11 [t, J = 4.5 Hz, 4 H,
NMR (500 MHz, D2O, 25 °C): δ = 7.91 [s, 1 H, CH(8NR)], 8.05 [s,
1 H, CH(12NR)], 7.91 [s, 1 H, CH(8R)], 7.69 [d, J = 8 Hz, 2 H,
CH(9NR)], 7.58 [d, J = 8 Hz, 2 H, CH(9R)], 7.25 [s, 1 H, CH(12RI)],
7.11 [d, J = 8 Hz, 2 H, CH(10NR)], 6.88 [d, J = 8 Hz, 2 H,
CH(10R)], 5.40 [d, J = 14 Hz, 1 H, 1/2 CH2(11R)], 5.29 [d, J =
14 Hz, 1 H, 1/2 CH2(11R)], 5.23 [s, 14 H, CH2(11NR)], 5.11–4.81
(m, 14 H, H-1), 4.68–5.06 (m, 2 H, H6R), 4.95–4.54 (m, 4 H,
H6NR), 4.67–4.39 (m, 2 H, H6RI), 4.15 (t, J = 9 Hz, 1 H, H5R
substituted subunit), 4.11–2.61 (m, 159 H, H-2, H-3, H-4, H-5, H-
CH2(7)], 3.85 [t, J = 4.5 Hz, 4 H, CH2(8)], 2.99 [s, 2 H, CH(1)], 6) ppm. 13C NMR (126 MHz, D2O, 25 °C): δ = 128–125 (C9),
3.74 [s, 4 H, CH2(9)] ppm. 13C NMR (75 MHz, CDCl3, 25 °C): δ
= 159.2 (C3), 133.6 (C4), 114.6 (C5), 114.3 (C6), 83.7 (C2), 75.9
(C1), 71.0 (C9), 69.6 (C8), 67.4 (C7) ppm.
125.0 (C12), 122.5 (C8), 118.6 (C10), 115.9 (C10), 104–100 (C1),
84–80 (C4, C5), 75–70 (C2, C3), 62.6 (C11), 61–58 (C6 nonsubsti-
tuted subunit and C6 substituted subunit), 52.1 (C6 substituted
subunit) ppm. HRMS: calcd. for [C95H146N6O69 + Na]+ 2498.80;
found 2497.98.
General Procedure for Copper-Catalyzed Azide Alkyne Cycload-
dition (CuAAC): Mono-6-azido-β-CD (2 equiv.) and hydrated cop-
per sulfate (4 equiv.) were added to a solution of dialkynyl deriva-
tive (1 equiv.) in DMSO (50 mL). After subsequent dropwise ad-
dition of a freshly prepared solution of sodium ascorbate (8 equiv.)
dissolved in H2O (10 mL), the solution was stirred at room temp.
for 24 h. The crude product was then precipitated with acetone to
give a green solid. After filtration, the residue was purified by col-
umn chromatography (water/ammoniac, 80:20) to remove the cop-
per salts. After solvent evaporation, the product was precipitation
in a water/acetone mixture. The solid was filtered and purified by
chromatography (CH3CN/H2O, 7:3) to give the pure dimer (80–
85% yield) as a white powder.
1,18-Bis[1-(6A-deoxy-β-
D-cyclodextrin)-1H-1,2,3-triazol-4-
yl]-2,5,8,11,14,17-hexaoxaoctadecane (8): 1H NMR (500 MHz,
D2O, 25 °C): δ = 7.97 [s, 2 H, CH(8NR)], 7.93 and 7.88 [s, 2 H,
CH(8R)], 5.11–4.85 (m, 14 H, H-1), 4.96–4.62 (m, 2 H, H6RI), 4.52–
4.97 (m, 2 H, H6R), 4.54–4.93 (m, 4 H, H6NR), 4.61 [m, 8 H,
CH2(9)], 4.11 (t, J = 9 Hz, 2 H, H5NR), between 3.98–3.22 (m, 155
H, H-2, H-3, H-4, H-5, H-6), 3.06 (d, J = 12 Hz, 2 H, H-6), 2.71
(d, J = 12 Hz, 2 H, H-6) ppm. 13C NMR (126 MHz, D2O, 25 °C):
δ = 126–123 (C8), 104–100 (C1), 84–80 (C4, C5), 75–70 (C2, C3),
72–68 (C10, C11, C12, C13, C14), 63.7 (C9), 61–58 (C6 nonsubsti-
tuted subunit and C6 substituted subunit), 52.4 (C6 substituted
subunit) ppm. HRMS: calcd. for [C100H164N6O74 + Na]+ 2656.92;
found 2656.16.
Bis[1-(6A-deoxy-β-
D-cyclodextrin)-1H-1,2,3-triazol-4-ylmethyl]
Ether (1): 1H NMR (500 MHz, D2O, 25 °C): δ = 7.99 [s, 2 H,
CH(8)], between 4.85 and 5.10 (m, 14 H, H-1), 4.54–4.93 (m, 4 H,
H-6 substituted subunit), 4.65 [s, 4 H, CH2(9)], 4.11 (t, J = 9 Hz,
2 H, H-5 substituted subunit), 3.97–3.35 (m, 74 H, H-2, H-3, H-4,
H-5, H-6), 3.07 (d, J = 12 Hz, 2 H, H-6), 2.73 (d, J = 12 Hz, 2 H,
H-6) ppm. 13C NMR (126 MHz, D2O, 25 °C): δ = 127.3 (C8), 104–
100 (C1), 84–80 (C4, C5), 75–70 (C2, C3), 64.6 (C9), 63–60 (C6
nonsubstituted subunit and C6 substituted subunit), 51.7 (C6 sub-
stituted subunit) ppm. HRMS: calcd. for [C90H144N6O69 + Na]+
2435.78; found 2435.62.
1,2-Bis(2-{4-[1-(6A-deoxy-β-
D-cyclodextrin)-1H-1,2,3-triazol-4-
1
yl]phenoxyl}ethoxy)ethane (10): H NMR (500 MHz, D2O, 25 °C):
δ = 7.98 [s, 2 H, CH(8NR)], 7.75 [s, 1 H, CH(8RI)], 7.69 [s, 1 H,
CH(8R)], 7.44 [d, J = 8 Hz, 4 H, CH(9NR)], 7.40 [d, J = 8 Hz, 2 H,
CH(9RI)], 7.39 [d, J = 8 Hz, 2 H, CH(9R)], 7.08 [d, J = 8 Hz, 2 H,
CH(10R)], 6.84 [d, J = 8 Hz, 4 H, CH(10NR)], 6.67 [d, J = 8 Hz, 2
H, CH(10RI)], 5.14–4.78 (m, 14 H, H-1), 5.02–4.45 (m, 2 H, H6R),
4.9 (m, 2 H, H6RI), 4.88–4.39 (m, 4 H, H6NR), 4.3 [br. s, 2 H,
CH2(11R)], 4.15 (m, 1 H, H5RI), 4.02 [br. s, 4 H, CH2(11NR)], be-
1,3-Bis[1-(6A-deoxy-β-
D-cyclodextrin)-1H-1,2,3-triazol-4-yl]benz-
tween 2.58 and 4.00 (m, 181 H, H-2, H-3, H-4, H-5, H-6, H-11RI
,
H-12, H-13) ppm. 13C NMR (126 MHz, D2O, 25 °C): δ = 128–126
(C9), 122–118 (C8), 117–113 (C10), 104–101 (C1), 85–80 (C4, C5),
75–70 (C2, C3), 70–67 (C11, C12), 61–58 (C6 nonsubstituted sub-
unit and C6 substituted subunit), 53–50 (C6 substituted sub-
unit) ppm. HRMS: calcd. for [C106H160N6O72 + Na]+ 2692.90;
found 2692.21.
ene (2): 1H NMR (500 MHz, D2O, 25 °C): δ = 8.32 [s, 2 H, CH(8)],
8.14 [s, 1 H, CH(13)], 7.73 [d, J = 8 Hz, 2 H, CH(11)], 7.53 [t, J =
8 Hz, 1 H, CH(12)], 5.13–4.81 (m, 14 H, H-1), 5.02–4.56 (m, 4 H,
H-6 substituted subunit), 4.08 (t, J = 9 Hz, 2 H, H-5 substituted
subunit), 4.00–3.20 (m, 74 H, H-2, H-3, H-4, H-5, H-6), 3.00 (d, J
= 12 Hz, 2 H, H-6), 2.79 (d, J = 12 Hz, 2 H, H-6) ppm. 13C NMR
(126 MHz, D2O, 25 °C): δ = 130.5 (C12), 124.3 (C11), 123.1 (C8),
121.9 (C13), 102–98 (C1), 83–79 (C4, C5), 75–70 (C2, C3), 61–58
(C6 nonsubstituted subunit and C6 substituted subunit), 51.6 (C6
Supporting Information (see footnote on the first page of this arti-
cle): NMR spectra.
substituted subunit) ppm. HRMS: calcd. for [C94H144N6O68
+
Na]+ 2468.79; found 2468.52.
Acknowledgments
1,4-Bis[1-(6A-deoxy-β-
D-cyclodextrin)-1H-1,2,3-triazol-4-yl]benz-
J. P. is grateful to the Région Nord-Pas-Calais and the Centre
National de la Recherche Scientifique (CNRS) for financial sup-
port (2010–2013). The authors are grateful to Roquette Frères
(Lestrem, France) for a gift of β-cyclodextrin.
ene (3): 1H NMR (500 MHz, D2O, 25 °C): δ = 8.30 [s, 2 H, CH(8)],
7.83 [s, 4 H, CH(9)], 5.13–4.81 (m, 14 H, H-1), 5.00–4.55 (m, 4 H,
H-6 substituted subunit), 4.08 (t, J = 9 Hz, 2 H, H-5 substituted
subunit), 4.02–3.20 (m, 74 H, H-2, H-3, H-4, H-5, H-6), 3.00 (d, J
= 12 Hz, 2 H, H-6), 2.74 (d, J = 12 Hz, 2 H, H-6) ppm. 13C NMR
(126 MHz, D2O, 25 °C): δ = 126.4 (C Ar), 123.2 (C8), 105–100
(C1), 84–80 (C4, C5), 75–70 (C2, C3), 62–58 (C6 nonsubstituted
subunit and C6 substituted subunit), 51.4 (C6 substituted sub-
unit) ppm. HRMS: calcd. for [C94H144N6O68 + Na]+ 2468.79;
found 2468.79.
[1] a) J. Szejtli, T. Osa, in: Comprehensive Supramolecular Chemis-
try: Cyclodextrins (Eds.: J. L. Atwood, J. E. D. Davies, D. D.
MacNicol, F. Vögtle), Pergamon, 1999, vol. 3; b) H. Dodziuk,
in: Cyclodextrins and Their Complexes, Wiley-VCH, Weinheim,
Germany, 2006.
[2] a) E. Bilensoy, in: Cyclodextrins in Pharmaceutics, Cosmetics
and Biomedecine: Current and Future Industrial Applications,
John Wiley & Sons, Hoboken, New Jersey, 2011; b) A. L. Laza-
1-(6A-Deoxy-β-
D D-cyclodex-
-cyclodextrin)-4-(4-{[1-(6A-deoxy-β-
1
trin)-1H-1,2,3-triazol-4-yl]methoxy}phenyl)-1H-1,2,3-triazol (6): H
Eur. J. Org. Chem. 2014, 1547–1556
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1555