C. Forzato et al. / Tetrahedron: Asymmetry 12 (2001) 1039–1046
1045
211.3 (s), 177.9 (s), 46.8 (d), 41.6 (t), 34.2 (t), 33.7 (t), 27.6
(t), 25.0 (t) ppm.
References
1. (a) Rodriguez, A. D.; Pin˜a, I. C.; Barness, C. L. J. Org.
Chem. 1995, 60, 8096–8100; (b) Brown, H. C.; Kulkarni,
S. K.; Racherla, U. S. J. Org. Chem. 1994, 59, 365–369
and references cited therein; (c) Handbook of Natural
Pesticides; Morgan, E. D.; Mandava, N. B., Eds.; CRC
Press: Boca Raton, USA, 1988; Vol. IV, Part B, pp.
80–110; (d) Fischer, N. H.; Olivier, E. J.; Fischer, H. D.
Fortschr. Chem. Org. Naturst. 1979, 38, 47–390; (e)
Devon, T. K.; Scott, A. I. Handbook of Naturally Occur-
ring Compounds; Academic Press: New York, 1975; Vol.
1.
2. (a) Trost, B. M.; Tang, W.; Schulte, J. Org. Lett. 2000, 2,
4013–4015; (b) Singh, I. P.; Milligan, K. E.; Gerwick, W.
H. J. Nat. Prod. 1999, 62, 1333–1335; (c) Gunasekera, S.
P.; Gunasekera, M.; Longley, R. E.; Shulte, G. K. J. Org.
Chem. 1990, 55, 4912–4915; (d) Rocca, J. R.; Tumlinson,
J. H.; Glancey, B. M.; Lofren, C. S. Tetrahedron Lett.
1983, 24, 1893–1896 and 1889–1892; (e) Endo, A.;
Kuroda, M.; Tsujita, Y. J. Antibiot. 1976, 29, 1346–1348.
3. (a) Lin, G.-Q.; Wang, W.; Xu, M.-H. Org. Lett. 2000, 2,
2229–2232; (b) Miyabe, H.; Fujii, K.; Goto, T.; Naito, T.
Org. Lett. 2000, 2, 4071–4074; (c) El Ali, B.; Alper, H.
Synlett 2000, 161–171; (d) Cardillo, G.; Tommasini, C.
Chem. Soc. Rev. 1996, 25, 117–128; (e) Matsushima, A.;
Kodera, Y.; Hiroto, M.; Nishimura, H.; Inada, Y. J.
Mol. Cat. B: Enzymatic 1996, 2, 1–17; (f) Cole, D. C.
Tetrahedron 1994, 50, 9517–9582.
4. (a) Faber, K. Biotransformations in Organic Compounds;
Springer: Berlin, 2000; (b) Santaniello, E.; Ferraboschi,
P.; Grisenti, P.; Manzocchi, A. Chem. Rev. 1992, 92,
1071–1140; (c) Csuk, R.; Gla¨nzer, B. I. Chem. Rev. 1991,
91, 49–97; (d) Servi, S. Synthesis 1990, 1–25.
5. (a) Aragozzini, F.; Maconi, E.; Craveri, R. Appl. Micro-
biol. Biotechnol. 1986, 24, 175–177; (b) Fantin, G.;
Fogagnolo, M.; Giovannini, P. P.; Medici, A.; Pedrini,
P.; Gardini, F.; Lanciotti, R. Tetrahedron 1996, 52, 3547–
3552.
6. Molinari, F.; Gandolfi, R.; Villa, R.; Occhiato, E. G.
Tetrahedron: Asymmetry 1999, 10, 3515–3520.
7. Gessner, M.; Gu¨nther, C.; Mosandl, A. Z. Naturfortsch.
1987, 42c, 1159–1164.
8. Utaka, M.; Watabu, H.; Takeda, A. J. Org. Chem. 1987,
53, 4363–4368.
4.4. Synthesis of lactones
Lactones 5a and 5c were purchased from Aldrich.
Lactones 5b,10 5e16,29 and 6e17 were prepared according
to the literature methods.
4.4.1. 4,5-Dihydro-4-methyl-5-phenyl-2(3H)-furanone 5d.
To a solution of 2d (0.220 g, 1 mmol) in EtOH (0.5 mL)
was added NaBH4 (0.019 g, 0.5 mmol) with stirring. At
the end of the reaction, the solvent was evaporated and
the crude reaction mixture was extracted with ether. The
organic phase was dried on Na2SO4. All spectroscopic
data are in accordance with the literature.26,30
4.5. Bioreduction conditions
4.5.1. General procedure for baker’s yeast reduction. To
a stirred suspension of raw baker’s yeast or dry baker’s
yeast in water or 0.1 M phosphate buffer (pH 7.4), was
added glucose; the suspension was stirred for 30 min and
the g- or d-ketoesters or acids were added at rt. The
course of the reaction was monitored by HRGC after
treatment of the crude reaction mixture with CH2N2 to
esterify the acid. The e.e. of the lactones was determined
by chiral HRGC on a g-CDX or a b-CDX column.
Amounts of baker’s yeast and glucose, substrate concen-
trations and reaction times are indicated in Tables 1–3.
4.5.2. General procedure for yeasts reduction. The follow-
ing yeasts were used: P. minuta CBS 1708, P. fermentans
DPVPG 2770, P. glucozyma CBS 5766, P. etchellsii CBS
2011, C. boidinii CBS 2428, C. utilis CBS 621 and K.
marxianus CBS 397. To a stirred suspension of wet yeast
(5 mL, 21–27 mg/mL of dry weight) in phosphate buffer
(0.1 M, pH 6.0), was added glucose (0.25 g). The
suspension was stirred for 30 min and the g- or d-
ketoesters or acids (12.5 mg) added at rt. The course of
the reaction was monitored by HRGC after treatment of
the crude reaction mixture with CH2N2 to esterify the
acid. The e.e. of the lactone product was determined by
chiral HRGC on a g-CDX or a b-CDX column.
4.5.3. (4aR,8aS)-Octahydro-2H-1-benzopyran-2-one t-
6e. To P. glucozyma (45 mL, 23 mg/mL) in phosphate
buffer (pH 6.0) and glucose, (4.5 g, 0.225 g) was added
3e (1.3 mmol) and the mixture was stirred at rt. After 4
days the levels of 3e, c-6e and t-6e were 14, 6 and 80%,
respectively. Separation by flash chromatography fur-
9. Dufosse, L.; Feron, G.; Latrasse, A.; Guichard, E.;
Spinnler, H.-E. Chirality 1997, 9, 667–671.
10. Benedetti, F.; Forzato, C.; Nitti, P.; Pitacco, G.;
Valentin, E.; Vicario, M. Tetrahedron: Asymmetry 2001,
12, 505–511.
11. Heide, R.; de Valois, P. J.; Visser, J.; Jaegers, P. P.;
Timmer, R. In Analysis of Food and Beverages;
Charalambous, G., Ed.; Academic Press: New York,
1978; p. 275.
12. Manzocchi, A.; Casati, R.; Fiecchi, A.; Santaniello, E. J.
Chem. Soc., Perkin Trans. 1 1987, 2753–2757.
13. Hanessian, S.; Raghavan, S. Biorg. Med. Chem. Lett.
1994, 4, 1697–1702.
1
nished pure t-6e (0.015 g, 0.1 mmol). IR, H and 13C
NMR were identical with the reported values.31 [h]D25=
−40.5 (c 0.98, MeOH), Dm235=+0.20, Dm209=−0.34
(MeOH), e.e.=94% (by chiral HRGC on a g-CDX
column).
Acknowledgements
14. Ganaha, M.; Funabiki, Y.; Motoki, M.; Yamauchi, S.;
Kinoshita, Y. Biosci. Biotechnol. Biochem. 1998, 62, 181–
184.
Financial support by the MURST, CNR (Rome) and the
University of Trieste are gratefully acknowledged.
15. Fogal, E.; Forzato, C.; Nitti, P.; Pitacco, G.; Valentin, E.
Tetrahedron: Asymmetry 2000, 11, 2599–2614.