ChemComm
Communication
YP_004815539),20 we can use the data presented here to assign
the function of this terpene cyclase to isoafricanol synthase
(Fig. S2 of ESI†).
S. violaceusniger produces one previously unidentified major
sesquiterpene alcohol X along with a few known minor terpenes. We
have established a robust synthetic route to achieve all five singly
13C-labelled isotopomers of deoxyxylulose and successfully applied
these compounds in feeding experiments together with the newly
developed CLSA-NMR technique. The NMR data obtained allowed
for unambiguous assignment of the structure of isoafricanol to X.
Furthermore, the function of one uncharacterised sesquiterpene
cyclase in S. violaceusniger could be assigned as isoafricanol
synthase. With the synthetic 13C-labelled deoxyxylulose isotopomers
in our hands application of the CLSA-NMR technique for structure
elucidation of several more bacterial terpenes is now possible.
This work was funded by the Deutsche Forschungsge-
meinschaft (DFG) with an Emmy-Noether grant (DI1536/1-3),
a Heisenberg grant (DI1536/4-1) and a grant ‘‘Duftstoffe aus
Actinomyceten’’ (DI1536/2-1). We thank Hans-Peter Fiedler
(Tu¨bingen) for Streptomyces violaceusniger Tu¨4113.
Scheme 3 Biosynthesis of 3 and related sesquiterpene alcohols.
filters with CDCl3, and direct analysis by 13C-NMR and DEPT
spectroscopy yielded for each feeding experiment three major
13C-NMR signals (Fig. S4–S8 of ESI†), along with some peaks of
lower intensities originating from incorporation of labelling
into terpenes that are produced in small amounts, such as 1–3.
The relevant 13C-NMR data for structure elucidation of X are
summarised in Table S1 of ESI,† together with a summary of
13C-NMR data from the literature of structurally related known
compounds. All fifteen 13C-NMR signals perfectly matched the
reported chemical shifts of isoafricanol (16a),22 thus confirming
its identity with X, while all alternative structures could be ruled
out. Particularly interesting was the outcome of the feeding of 9c
that resulted in incorporation into C-1 and C-8 of 16a
(Scheme 4). Each molecule of 16a with incorporation of labelling
into both carbons showed up as doublets in the 13C-NMR
spectrum (2JC,C = 36.9 Hz), confirming the C-1/C-8 ring closure
in 16a, while incorporation into only one of these carbons gave
the usual singlets (Fig. S6 of ESI†). Due to the full assignment of
all chemical shifts for 16a,23 the feeding experiments with 9b
and 9e also gave insights into the stereochemical course of the
terpene cyclisation. The terminal (E)-methyl group of FPP,
labelled after feeding of 9b, is converted into C-13 of 16a (d =
31.1 ppm), while the terminal (Z)-methyl group that is labelled
after feeding of 9e, ends up as C-14 of 16a (d = 31.6 ppm).
Isoafricanol has previously been isolated, first from the
ascomycete Leptographium lundbergii23 and later from the liverwort
Nardia scalaris24 and the marine red alga Laurencia mariannensis,25
but never from bacteria. Since the genome of S. violaceusniger
has been sequenced and only one terpene cyclase with unas-
signed function is encoded (ZP_07605120, updated by record
Notes and references
1 K. Grob, J. Chromatogr., 1973, 84, 255.
2 K. Grob and F. Zu¨rcher, J. Chromatogr., 1976, 117, 285.
¨
3 W. Boland, P. Ney, L. Janicke and G. Grassmann, A ‘‘Closed-loop-
stripping’’ technique as a versatile tool for metabolic studies of
volatiles, in Analysis of Volatiles: Method, Applications, ed. P. Schreier,
de Gruyter, Berlin, 1984, p. 371.
4 M. D. Papke, S. E. Riechert and S. Schulz, Anim. Behav., 2001, 61, 877.
5 S. Schulz, J. Fuhlendorff and H. Reichenbach, Tetrahedron, 2004,
60, 3863.
6 J. S. Dickschat, S. C. Wenzel, H. B. Bode, R. Mu¨ller and S. Schulz,
ChemBioChem, 2004, 5, 778.
7 J. S. Dickschat, H. B. Bode, S. C. Wenzel, R. Mu¨ller and S. Schulz,
ChemBioChem, 2005, 6, 2023.
8 J. S. Dickschat, T. Martens, T. Brinkhoff, M. Simon and S. Schulz,
Chem. Biodiversity, 2005, 2, 837.
9 C. A. Citron, J. Gleitzmann, G. Laurenzano, R. Pukall and J. S.
Dickschat, ChemBioChem, 2012, 13, 202.
10 R. Riclea, B. Aigle, P. Leblond, I. Schoenian, D. Spiteller and
J. S. Dickschat, ChemBioChem, 2012, 13, 1635.
11 C. A. Citron, P. Rabe and J. S. Dickschat, J. Nat. Prod., 2012, 75, 1765.
12 P. Rabe and J. S. Dickschat, Angew. Chem., Int. Ed., 2013, 52, 1810.
13 T. Wang, P. Rabe, C. A. Citron and J. S. Dickschat, Beilstein J. Org.
Chem., 2013, 9, 2767.
¨
¨
14 C. E. G. Scholler, H. Gurtler, R. Pedersen, S. Molin and K. Wilkins,
J. Agric. Food Chem., 2002, 50, 2615.
¨
15 K. Wilkins and C. Scholler, Actinomycetologica, 2009, 23, 27.
16 N. L. Brock, S. R. Ravella, S. Schulz and J. S. Dickschat, Angew.
Chem., Int. Ed., 2013, 125, 2154.
17 C. A. Citron, N. L. Brock, B. Tudzynski and J. S. Dickschat, Chem.
Commun., 2014, DOI: 10.1039/C3CC45982A.
18 N. L. Brock and J. S. Dickschat, ChemBioChem, 2013, 14, 1189.
19 O. Meyer, J.-F. Hoeffler, C. Grosdemange-Billiard and M. Rohmer,
Tetrahedron, 2004, 60, 12153.
20 X. Chen, B. Zhang, W. Zhang, X. Wu, M. Zhang, T. Chen, G. Liu and
P. Dyson, Genome Announc., 2013, 1, e00494-13.
21 J. S. Dickschat, Nat. Prod. Rep., 2011, 28, 1917.
22 W. Fan and J. B. White, J. Org. Chem., 1993, 58, 3557.
23 W.-R. Abraham, L. Ernst, L. Witte, H.-P. Hanssen and E. Sprecher,
Tetrahedron, 1986, 42, 4475.
24 U. Langenbahn, G. Burkhardt and H. Becker, Phytochemistry, 1993,
33, 1173.
25 N.-Y. Ji, X.-M. Li, K. Li, L.-P. Ding, J. B. Gloer and B.-G. Wang,
J. Nat. Prod., 2007, 70, 1901.
Scheme 4 Incorporation of labelling into 16a after feeding of 9c. Black
circles indicate 13C-labelled carbons.
4230 | Chem. Commun., 2014, 50, 4228--4230
This journal is ©The Royal Society of Chemistry 2014