Y. Vera-Ayoso et al. / Tetrahedron: Asymmetry 15 (2004) 429–444
441
2
4.85 (ddd, 1H, J3;F ¼ 54:9, J3;4 ¼ 9:7, J2;3 ¼ 9:0, H-3),
(OMe), 51.4 (C-3), and 23.7 (COMe); HRCIMS: m=z
349.1509 (calcd for C16H20N4O5+H: 349.1512).
5
0
4.27 (ddd, 1H, J6;6 ¼ 9:0, J5;6 ¼ 3:7, J6;F ¼ 2:1, H-6),
3
3.92 (ddd, 1H, J4;F ¼ 20:0, J4;5 ¼ 12:1, H-4), 3.85–3.80
(m, 2H, H-5 and H-60), 3.73 (ddd, 1H, 3J2;F ¼ 11:3, H-2),
and 3.45 (s, 3H, OMe); 13C NMR (75.8 MHz,
CD3COCD3) d 138.5–127.1 (m, Ph), 102.2 (CH-Ph),
5.13. Methyl 3-azido-6-O-tert-butyl-diphenylsilyl-2,3,4-
trideoxy-4-fluoro-a-
and methyl 3-azido-6-O-tert-butyl-diphenylsilyl-2,3,4-tri-
deoxy-4-fluoro-a- -threo-hex-2-enopyranoside, 43
D
-erythro-hex-2-enopyranoside, 42,
3
1
100.5 (d, J1;F ¼ 8:3, C-1), 89.9 (d, J3;F ¼ 187:2, C-3),
2
80.1 (d, J4;F ¼ 17:4, C-4), 69.1 (C-6), 63.0 (d,
D
3J5;F ¼ 7:6, C-5), 62.7 (d, J2;F ¼ 17:4, C-2), and 55.7
2
(OMe); HRCIMS: m=z 310.1190 (calcd for
C14H16FN3O4+H: 310.1203).
DAST (137 lL, 1.04 mmol) was added to an ice-cooled
solution of methyl 3-azido-6-O-tert-butyl-diphenylsilyl-
3-deoxy-a-D-altropyranoside 27 (0.094 g, 0.207 mmol) in
dry dichloromethane (3.8 mL). After a few minutes, the
cooling bath was removed and the mixture refluxed for
2 h. After dilution with iced saturated aqueous sodium
hydrogen carbonate (70 mL), the aqueous layer was
extracted with dichloromethane (3 · 30 mL). The com-
bined organic layers were washed with brine (70 mL),
dried over Na2SO4, and concentrated to afford, after
column chromatography (10:1 hexane/ethyl acetate), a
5.12. Methyl 2-azido-4,6-O-benzylidene-2,3-dideoxy-3-
fluoro-b-D-altropyranoside, 40, and methyl 3-acetamido-
2-azido-4,6-O-benzylidene-2,3-dideoxy-b-D-altropyrano-
side, 41
DAST (235 lL, 1.69 mmol) was added to a cold solution
of methyl 3-azido-4,6-O-benzylidene-3-deoxy-b-
1
D
-
1:1 mixture (by H NMR) of 42 and 43 (0.070 g, 77%),
which could be separated by TLC (40:1 hexane/ethyl
acetate, 4 runs).
altropyranoside27 25 (0.109 g, 0.355 mmol) in dry aceto-
nitrile (6.5 mL) and the mixture refluxed for 1.5 h. The
solvent was then evaporated and the residue treated with
dichloromethane and iced saturated aqueous sodium
hydrogen carbonate; the organic layer was washed with
brine, dried over Na2SO4, and concentrated to afford a
crude product. Column chromatography (10:1 hexane/
ethyl acetate) led to the separation of the unreacted
starting material 25 (0.026 g, indicating 76% of conver-
sion), the fluoro compound 40 (0.025 g, 23%, corre-
sponding to 31% yield from converted substrate), and
the Ritter reaction product 41 (0.039 g, 32%, corre-
sponding to 42% from converted substrate).
Compound 42: Syrup; Rf 0.45 (10:1 hexane/ethyl ace-
25
D
tate); ½a ¼ )1.8 (c 0.67, acetone); IR (film) mmax 2114
(N3), 978 (CF), and 702 cmÀ1 (CSi); 1H NMR
(300 MHz, CD3COCD3) d 7.76–7.43 (m, 10H, 2 Ph),
2
5.58 (d, 1H, J1;2 ¼ 3:5, H-2), 5.29 (dd, 1H, J4;F ¼ 51:5,
J4;5 ¼ 8:8, H-4), 5.11 (d, 1H, H-1), 4.14 (ddd, 1H,
3
0
J5;6 and 6 ¼ 4:0, J5;F ¼ 13:4, H-5), 3.96 (dd, 2H,
J6 and 6 ;F ¼ 1:4, H-6 and H-60), 3.41 (s, 3H, OMe), and
4
0
1.06 (s, 9H, CMe3); 13C NMR (75.8 MHz, CD3COCD3)
d 136.4–128.6 (m, Ph), 134.0 (d, 2J3;F ¼ 13:6, C-3), 114.4
1
(C-2), 96.5 (C-1), 83.5 (d, J4;F ¼ 173:6, C-4), 70.9 (d,
2J5;F ¼ 24:3, C-5), 63.8 (C-6), 55.9 (OMe), 27.1 (CMe3),
and 19.8 (CMe3); HRCIMS: m=z 442.1968 (calcd for
C23H28FN3O3Si+H: 442.1962).
Compound 40: Amorphous material; Rf 0.56 (4:1 hex-
22
D
ane/ethyl acetate); ½a ¼ )107.3 (c 1.14, acetone); IR
(film) mmax 2112 (N3) and 986 cmÀ1 (CF); 1H NMR
(500 MHz, CD3COCD3) d 7.49–7.34 (m, 5H, Ph), 5.71
4
(s, 1H, CH-Ph), 4.98 (dd, 1H, J1;F ¼ 2:7, J1;2 ¼ 1:7,
Compound 43: Syrup; Rf 0.43 (10:1 hexane/ethyl ace-
25
2
H-1), 4.91 (ddd, 1H, J3;F ¼ 49:7, J2;3 ¼ 3:7, J3;4 ¼ 1:7,
tate); ½a ¼ )4.4 (c 0.60, acetone); IR (film) mmax 2110
D
(N3), 1055 (CF) and 702 cmÀ1 (CSi); 1H NMR
(500 MHz, CD3COCD3) d 7.76–7.44 (m, 10 H, 2 Ph),
5.71 (dd, 1H, J1;2 ¼ 4J2;F ¼ 3:3, H-2), 5.12 (dd, 1H,
0
H-3), 4.31 (dd, 1H, J6;6 ¼ 9:8, J6;5 ¼ 4:4, H-6), 4.21
3
(ddd, 1H, J2;F ¼ 7:5, H-2), 3.89–3.78 (m, 3H, H-4, H-5
and H-60), and 3.55 (s, 3H, OMe); 13C NMR
2
5J1;F ¼ 3:5, H-1), 4.91 (dd, 1H, J4;F ¼ 49:9, J4;5 ¼ 2:0,
(125.7 MHz, CD3COCD3) d 138.7–127.2 (m, Ph), 102.8
1
3
(CH-Ph), 100.9 (C-1), 88.6 (d, J3;F ¼ 181:0, C-3), 75.6
0
H-4), 4.29 (dddd, 1H, J5;F ¼ 30:3, J5;6 ¼ J5;6 ¼ 6:5, H-
2
3
(d, J4;F ¼ 16:3, C-4), 69.3 (C-6), 64.5 (d, J5;F ¼ 2:5,
0
5), 4.00 (dd, 1H, J6;6 ¼ 10:3, H-6), 3.88 (ddd, 1H,
2
J6 ;F ¼ 1:7, H-60), 3.37 (s, 3H, OMe) and 1.06 (s, 9H,
4
C-5), 61.6 (d, J2;F ¼ 26:4, C-2), and 57.4 (OMe);
0
CMe3); 13C NMR (125.7 MHz, CD3COCD3) d 136.7 (d,
HRCIMS: m=z 310.1191 (calcd for C14H16FN3O4+H:
310.1203).
2J3;F ¼ 15:1, C-3), 136.3–128.7 (m, 2Ph), 116.0 (d,
3J2;F ¼ 7:5, C-2), 96.2 (C-1), 82.2 (d, J4;F ¼ 178:5, C-4),
1
71.1 (d, 2J5;F ¼ 17:6, C-5), 62.9 (d, 3J6;F ¼ 7:5, C-6), 55.7
(OMe), 27.1 (CMe3), and 19.7 (CMe3); HRCIMS: m=z
442.1972 (calcd for C23H28FN3O3Si+H: 442.1962).
Compound 41: Syrup; Rf 0.37 (1:1 hexane/ethyl acetate);
24
D
½a ¼ )54.6 (c 0.80, acetone); IR (film) mmax 3304 (NH),
1
2106 (N3), 1695 (CO) and 1353 cmÀ1 (NCO); H NMR
(300 MHz, CDCl3) d 7.50–7.37 (m, 5H, Ph), 5.71 (br,
1H, NH), 5.62 (s, 1H, CH-Ph), 4.75 (d, 1H, J1;2 ¼ 1:2,
H-1), 4.44 (dd, 1H, J2;3 ¼ 3:0, H-2), 4.39 (dd, 1H,
5.14. Reaction of methyl 3,6-dideoxy-a- -xylo-hexopyr-
anoside, 30, with DAST
D
0
J5;6 ¼ 4:9, J6;6 ¼ 10:3, H-6), 4.20 (m, 1H, H-3), 4.05 (dd,
0
1H, J4;5 ¼ 9:9, J3;4 ¼ 4:5, H-4), 3.88 (dd, 1H, J5;6 ¼ 10:0,
H-60), 3.69 (ddd, 1H, H-5), 3.56 (s, 3H, OMe), and 2.03
(s, 3H, COMe); 13C NMR (125.7 MHz, CDCl3) d 171.5
(CO), 129.1–127.7 (m, Ph), 101.8 (CH-Ph), 100.1 (C-1),
73.3 (C-4), 68.9 (C-6), 65.0 (C-5), 59.7 (C-2), 57.2
DAST (410 lL, 3.09 mmol) was added to a solution of
methyl 3,6-dideoxy-a- 30
-xylo-hexopyranoside29
(0.100 g, 0.617 mmol) in dry dichloromethane (4.4 mL)
D
cooled at 0 ꢁC, under argon. After 15 min, the cooling