ChemComm
Communication
and the NSF through Nebraska MRSEC (DMR-0820521) and
EPSCoR (EPS-1004094).
Notes and references
1 O. V. Yazyev, Acc. Chem. Res., 2013, 46, 2319–2328.
2 L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen and S. G. Louie,
Phys. Rev. Lett., 2007, 99, 186801.
3 V. Barone, O. Hod and G. E. Scuseria, Nano Lett., 2006, 6, 2748–2754.
4 D. A. Areshkin, D. Gunlycke and C. T. White, Nano Lett., 2006, 7, 204–210.
5 E. R. Mucciolo, A. H. Castro Neto and C. H. Lewenkopf, Phys. Rev. B,
2009, 79, 075407.
´
´
˜
6 M. Terrones, A. R. Botello-Mendez, J. Campos-Delgado, F. Lopez-
´
´
´
´
Urıas, Y. I. Vega-Cantu´, F. J. Rodrıguez-Macıas, A. L. Elıas, E. Munoz-
´
Sandoval, A. G. Cano-Marquez, J.-C. Charlier and H. Terrones,
Nano Today, 2010, 5, 351–372.
7 L. Ma, J. Wang and F. Ding, ChemPhysChem, 2013, 14, 47–54.
8 L. Chen, Y. Hernandez, X. L. Feng and K. Mullen, Angew. Chem.,
Int. Ed., 2012, 51, 7640–7654.
9 A. Chuvilin, E. Bichoutskaia, M. C. Gimenez-Lopez, T. W. Chamberlain,
G. A. Rance, N. Kuganathan, J. Biskupek, U. Kaiser and A. N. Khlobystov,
Nat. Mater., 2011, 10, 687–692.
10 T. W. Chamberlain, J. Biskupek, G. A. Rance, A. Chuvilin, T. J.
Alexander, E. Bichoutskaia, U. Kaiser and A. N. Khlobystov,
ACS Nano, 2012, 6, 3943–3953.
11 J. M. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg,
M. Muoth, A. P. Seitsonen, M. Saleh, X. L. Feng, K. Mullen and
R. Fasel, Nature, 2010, 466, 470–473.
Fig. 4 Spectroscopic characterization of 4N-GNRs. (a) EDX spectrum of
4N-GNRs deposited on a gold substrate. (b–d) XPS spectra of 4N-GNRs
deposited on a gold substrate: (b) survey spectrum, (c) N 1s spectrum and
(d) C 1s spectrum.
12 S. Blankenburg, J. M. Cai, P. Ruffieux, R. Jaafar, D. Passerone, X. L. Feng,
K. Mullen, R. Fasel and C. A. Pignedoli, ACS Nano, 2012, 6, 2020–2025.
13 Y.-C. Chen, D. G. de Oteyza, Z. Pedramrazi, C. Chen, F. R. Fischer
and M. F. Crommie, ACS Nano, 2013, 7, 6123–6128.
The inset in Fig. 3 shows a UV-vis-NIR absorption spectrum of
4N-GNRs that were suspended in mesitylene by sonication. This
spectrum is qualitatively similar to the UV-vis-NIR spectra of 14 C. Bronner, S. Stremlau, M. Gille, F. Brauße, A. Haase, S. Hecht and
P. Tegeder, Angew. Chem., Int. Ed., 2013, 52, 4422–4425.
15 J. Sakamoto, J. van Heijst, O. Lukin and A. D. Schluter, Angew.
other solution-synthesized GNRs, showing a strong absorption
in the visible range that gradually decreases with the wavelength
Chem., Int. Ed., 2009, 48, 1030–1069.
increasing toward the infrared region.19,21 The optical band gap 16 X. Y. Yang, X. Dou, A. Rouhanipour, L. J. Zhi, H. J. Rader and
K. Mullen, J. Am. Chem. Soc., 2008, 130, 4216–4217.
17 Y. Fogel, L. Zhi, A. Rouhanipour, D. Andrienko, H. J. Rader and
of 4N-GNRs determined from this spectrum is B1.6 eV.
¨
In order to confirm the presence of nitrogen atoms in the
K. Mu¨llen, Macromolecules, 2009, 42, 6878–6884.
structure of 4N-GNRs we characterized the ribbons by energy- 18 L. Dossel, L. Gherghel, X. L. Feng and K. Mullen, Angew. Chem.,
Int. Ed., 2011, 50, 2540–2543.
19 M. G. Schwab, A. Narita, Y. Hernandez, T. Balandina, K. S. Mali, S. De Feyter,
dispersive X-ray (EDX) spectroscopy and X-ray photoelectron
spectroscopy (XPS). Fig. 4a shows an EDX spectrum of 4N-GNRs
X. L. Feng and K. Mullen, J. Am. Chem. Soc., 2012, 134, 18169–18172.
deposited on a gold foil. The nitrogen peak is detectable although 20 K. T. Kim, J. W. Lee and W. H. Jo, Macromol. Chem. Phys., 2013, 214,
2768–2773.
small, which is not surprising, considering the expected N : C ratio
of 1 : 20. The only foreign peak observed in the spectrum is the low
21 T. H. Vo, M. Shekhirev, D. A. Kunkel, M. D. Morton, E. Berglund,
L. M. Kong, P. M. Wilson, P. A. Dowben, A. Enders and A. Sinitskii,
intensity O line, which is likely caused by atmospheric adsorbates.
The XPS survey spectrum (Fig. 4b) of the same sample demon-
strates only the peaks associated with the GNRs and the gold
substrate. XPS N 1s spectrum of 4N-GNRs (Fig. 4c) shows a single
peak at 397.1 eV, which is close to pyridinic nitrogen peaks in
N-doped graphene.33 XPS C 1s spectrum (Fig. 4d) contains the
Nat. Commun., 2014, 5, 3189.
22 A. Narita, X. Feng, Y. Hernandez, S. A. Jensen, M. Bonn, H. Yang,
I. A. Verzhbitskiy, C. Casiraghi, M. R. Hansen, A. H. R. Koch, G. Fytas,
O. Ivasenko, B. Li, K. S. Mali, T. Balandina, S. Mahesh, S. De Feyter and
K. Mullen, Nat. Chem., 2014, 6, 126–132.
23 R. Lv and M. Terrones, Mater. Lett., 2012, 78, 209–218.
´
24 F. Cervantes-Sodi, G. Csanyi, S. Piscanec and A. C. Ferrari, Phys. Rev. B,
2008, 77, 165427.
main peak corresponding to the C–C bonds and the weaker peak at 25 S. S. Yu, W. T. Zheng, Q. B. Wen and Q. Jiang, Carbon, 2008, 46, 537–543.
B288.5 eV likely representing C–N bonds.33,34
26 Y. Li, Z. Zhou, P. Shen and Z. Chen, ACS Nano, 2009, 3, 1952–1958.
27 X.-L. Wei, H. Fang, R.-Z. Wang, Y.-P. Chen and J.-X. Zhong, Appl.
In summary, we demonstrate that the synthetic approach
Phys. Lett., 2011, 99, 012107.
based on Yamamoto coupling of N-doped molecular precursors 28 H. Kim, K. Lee, S. I. Woo and Y. Jung, Phys. Chem. Chem. Phys., 2011,
13, 17505–17510.
and cyclodehydrogenation via Scholl reaction could be used to
synthesize high-quality 4N-GNRs. The ribbons were investigated
29 E. Cruz-Silva, Z. M. Barnett, B. G. Sumpter and V. Meunier, Phys. Rev.
B, 2011, 83, 155445.
by the combination of microscopic (STM, AFM, TEM) and 30 X. H. Zheng, X. L. Wang, T. A. Abtew and Z. Zeng, J. Phys. Chem. C,
2010, 114, 4190–4193.
31 A. C. Ferrari and D. M. Basko, Nat. Nanotechnol., 2013, 8, 235–246.
32 F. Negri, C. Castiglioni, M. Tommasini and G. Zerbi, J. Phys.
spectroscopic (UV-vis-NIR, XPS, EDX and Raman spectroscopy)
techniques. In the future studies, we will investigate if this
approach could also be employed for the synthesis of N-GNRs
with other structures and N : C ratios.
This work was supported by the Nebraska Center for Energy
Sciences Research (#12-00-13), the Nebraska Research Initiative
Chem. A, 2002, 106, 3306–3317.
33 D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, Nano Lett.,
2009, 9, 1752–1758.
34 A. P. Dementjev, A. de Graaf, M. C. M. van de Sanden, K. I. Maslakov,
A. V. Naumkin and A. A. Serov, Diamond Relat. Mater., 2000, 9, 1904–1907.
4174 | Chem. Commun., 2014, 50, 4172--4174
This journal is ©The Royal Society of Chemistry 2014