Organic Letters
Letter
Scheme 2. Plausible Role of the Pd−Ni NC To Catalyze the
Suzuki Cross-Coupling Reaction of 6 with 7 To Form 8
ACKNOWLEDGMENTS
K.S. thanks CSIR and DST (SR/S1/OC-33/2008), New Delhi,
India, for a senior research fellowship.
■
REFERENCES
■
(1) Chakraborti, A. K.; Garg, S. K.; Kumar, R.; Motiwala, H. F.;
Jadhavar, P. S. Curr. Med. Chem. 2010, 17, 1563.
(2) Dogne,
2251.
́
J. M.; Supuran, C. T.; Pratico, D. J. Med. Chem. 2005, 48,
(3) Cannon, C. P.; Cannon, P. J. Science 2012, 336, 1386−1387.
(4) Seth, K.; Garg, S. K.; Kumar, R.; Purohit, P.; Meena, V. S.; Goyal,
R.; Banerjee, U. C.; Chakraborti, A. K. ACS Med. Chem. Lett. 2014,
DOI: 10.1021/ml400500e.
(5) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
(6) The single literature report describes only one example of the
reaction of o-2-benzofuryl aryl carbamate with 2.5 equiv of phenyl-
boronic acid to afford 21% yield in o-xylene at 150 °C after 24 h.
Quasdorf, K. W.; Antoft-Finch, A.; Liu, P.; Silberstein, A. L.; Komaromi,
A.; Blackburn, T.; Ramgren, S. D.; Houk, K. N.; Snieckus, V.; Garg, N. K.
J. Am. Chem. Soc. 2011, 133, 6352.
(7) (a) Kumar, D.; Rudrawar, S.; Chakraborti, A. K. Aust. J. Chem.
2008, 61, 881. (b) Kumar, R.; Selvam, C.; Kaur, G.; Chakraborti, A. K.
Synlett 2005, 1401.
and regenerates the catalyst (Pd−Ni NC) to complete the
catalytic cycle.
The lack of a significant amount of product formation in the
absence of base (Table 1, entries 22 and 28) indicates its
indispensable role in activating the arylboronic acid through
proton abstraction21 to increase the nucleophilicity of the
corresponding aryl moiety and bind to the NP surface through
the oxyanionic site to promote the transmetalation. However,
K2CO3 could be replaced by CsF to make the Suzuki coupling
effective, albeit in reduced yield (69%, Supporting Information,
Table G)9 as in aprotic polar medium the fluoride anion is
capable of abstracting the proton22 from the arylboronic acid.23
Among the various solvents tried (Supporting Information,
Table I),9 the better yields (80 and 78%, respectively) in DMF
and diethylformamide (DEF) could be due to their reducing
ability to form the NPs.24 This is reflected in the inferior results
(50−70% yields)9 obtained in other aprotic polar solvents such
as DMA, DMSO, and NMP that are nonreducing, and as a result
the base is competitively involved to form the Pd and Ni NPs.25
This work describes Pd−Ni binary NC as an efficient and
recyclable catalyst system for Suzuki−Miyaura cross-coupling of
ortho-heterocycle-tethered, sterically hindered aryl bromides.
The inefficiency of the reported Pd/Ni catalysts and the
individual Pd and Ni NPs signifies the ensembling effect of the
Pd and Ni NPs in the Pd−Ni NC. The versatility is demonstrated
using different variation of the (i) 2-aryl moiety of ortho-
heterocycle-tethered aryl bromide, (ii) phenyl ring of the
heterocycle scaffold, and (iii) boronic acid that mark the distinct
advantages in diversity generation.
(8) (a) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am.
Chem. Soc. 1999, 121, 9550. (b) Littke, A. F.; Dai, C.; Fu, G. C. J. Am.
Chem. Soc. 2000, 122, 4020.
(9) Supporting Information.
(10) (a) Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J.-M.;
Polshettiwar, V. Chem. Soc. Rev. 2011, 40, 5181. (b) Balanta, A.; Godard,
C.; Claver, C. Chem. Soc. Rev. 2011, 40, 4973.
(11) The metallic precursor may influence the particle size
distribution: Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102,
3757.
(12) Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270.
(13) (a) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008,
130, 14422. (b) Guan, B.-T.; Wang, Y.; Li, B.-J.; Yu, D.-G.; Shi, Z.-J. J.
Am. Chem. Soc. 2008, 130, 14468.
(14) Park, J.; Kang, E.; Son, S. U.; Park, H. M.; Lee, M. K.; Kim, J.; Kim,
K. W.; Noh, H.-J.; Park, J.-H.; Bae, C. J.; Park, J.-G.; Hyeon, T. Adv.
Mater. 2005, 17, 429.
(15) Rodriguez, J. A.; Goodman, D. W. Science 1992, 257, 897.
(16) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry:
Principles of structure and reactivity, 4th ed.; Pearson Education:
Singapore, 2005; Chapter 2.
(17) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem., Int. Ed. 2005, 44,
7852.
(18) (a) Henglein, A. Chem. Rev. 1989, 89, 1861. (b) Rodunar, E.
Chem. Soc. Rev. 2006, 35, 583.
(19) CRC Handbook of Chemistry and Physics, 57th ed.; Weast, R. C.,
Ed.; CRC Press: Boca Raton, 1976.
(20) Wang, D.; Li, Y. J. Am. Chem. Soc. 2010, 132, 6280.
(21) Narayanan, R.; El-Sayed, M. A. J. Phys. Chem. B 2005, 109, 4357.
(22) (a) Chakraborti, A. K.; Sharma, L.; Nayak, M. K. J. Org. Chem.
2002, 67, 2541. (b) Nayak, M. K.; Chakraborti, A. K. Chem. Lett. 1998,
297.
ASSOCIATED CONTENT
■
S
* Supporting Information
(23) The role of the base has been ascribed to form the quadrivalent
aryl boron species through nucleophilic attack by the F−/OH−
[
Additional data, spectral data of all compounds, and scanned
spectra of new compounds. This material is available free of
(a) Amatore, C.; Jutand, A.; Duc, G. L. Angew. Chem., Int. Ed. 2012, 51,
1379. (b) Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 2116
].
́
(24) Pastoriza-Santos, I.; Liz-Marzan, L. M. Langmuir 1999, 15, 948.
(25) Seth, K.; Raha Roy, S.; Pipaliya, B. V.; Chakraborti, A. K. J. Chem.
Soc. Chem. Commun. 2013, 49, 5886 and references cited therein.
AUTHOR INFORMATION
■
Corresponding Author
*Tel: 91-(0)-172 2214683. Fax: 91-(0)-172 2214692. E-mail:
Notes
The authors declare no competing financial interest.
2337
dx.doi.org/10.1021/ol500587m | Org. Lett. 2014, 16, 2334−2337