C O M M U N I C A T I O N S
20 as a mixture of diastereomers.15 The diastereomers are separated
and purified using HPLC and crystallization.
ACE2 is a recently identified zinc metalloprotease with carboxy-
peptidase activity that was discovered using our genomics platform.
As a strategy to circumvent the caveats associated with HTS (i.e.,
expense, time commitment, and low probability for success for this
type of target), we implemented a rational design approach to
identify potent and selective ACE2 inhibitors. To this end, we
successfully designed and synthesized picomolar inhibitors of ACE2
using our understanding of the enzymatic mechanism, the substrate
data, and related protease literature. These inhibitors have low
molecular weights, are synthetically accessible from commercially
available chiral building blocks, and display excellent selectivity
versus related enzymes. Currently, these inhibitors are proving
useful in exploring the physiological relevance of ACE2 in vivo.
Figure 1. Design of ACE2 inhibitors.
Table 1. ACE2 Inhibitorsa
Acknowledgment. The authors thank Ian Parsons for perform-
ing NMR studies and Izumi Takagi, Nelson Troupe, and Ashok
Patil for analytical and preparative chromatographic support.
IC b (µM)
50
1
2
compound
R
R
ACE2
0.30
0.34
ACE
CPDA
Supporting Information Available: Synthetic procedures and
assays protocols (PDF). This material is available free of charge via
4
5
6
Ph
Ph
Me
Ph
2.8
cyclohexyl CH2
CH(CH3)2 0.27
7
8
9
10
11
12
13
14
15
16
cyclohexyl (CH3)2 CH(CH3)2 0.010
>10
12
References
4-NO2Ph
4-ClPh
4-CF3OPh
4-MePh
2-MePh
3-MePh
3,4-diMePh
3,5-diMePh
3,5-diClPh
CH(CH3)2 0.076
CH(CH3)2 0.021
CH(CH3)2 0.052
CH(CH3)2 0.032
CH(CH3)2 0.29
CH(CH3)2 0.0042
CH(CH3)2 0.010
CH(CH3)2 0.0014
>10
(1) Determined by northern blot analysis: Donoghue, M.; Stagliano, N.;
Acton, S., unpublished results.
(2) (a) Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.;
Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jayaseelan, R.;
Breitbart, R. E.; Acton, S. Circ. Res. 2000, 87, 1e-9e. (b) Tipnis, S. R.;
Hooper, N. M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A. J. J. Biol.
Chem. 2000, 275, 33238.
>10 >10
>10 >10
>10 >10
>10 >10
(3) Vickers, C.; Hales, P.; Kaushik, V.; Dick, L.; Gavin, J.; Tang, J.; Godbout,
K.; Parsons, T.; Baronas, E.; Hsieh, F.; Acton, S.; Patane, M.; Nichols,
A.; Tummino, P. J. Biol. Chem. 2002, 277, 14838.
CH(CH3)2 0.00044 >100
27
(4) Determined by mass spectrometry.
a n g 2, SEM within 50% of IC50 values. b Assay conditions: soluble
human ACE2, porcine, or human testicular ACE, Bovine CPDA.
(5) (a) Byers, L. D.; Wolfenden, R. Biochemistry 1973, 12, 2070. (b) Ondetti,
M. A.; Rubin, B.; Cushman, D. W. Science 1977, 196, 441. (c) Patchett,
A. A.; Harris, E.; Tristram, E. W.; Wyvratt, M. J.; Wu, M. T.; Taub, D.;
Peterson, E. R.; Ikeler, T. J.; tenBroeke, J.; Payne, L. G.; Ondeyka, D.
L.; Thorsett, E. D.; Greenlee, W. J.; Lohr, N. S.; Hoffsommer, R. D.;
Joshua, H.; Ruyle, W. V.; Rothrock, J. W.; Aster, S. D.; Maycock, A. L.;
Robinson, F. M.; Hirschmann, R.; Sweet, C. S.; Ulm, E. H.; Gross, D.
M.; Vassil, T. C.; Stone, C. A. Nature 1980, 288, 280.
Scheme 1. Synthesis of ACE2 Inhibitors
(6) Site of alkylation was confirmed using ROESY NMR.
(7) Data not shown.
(8) Representative data shown.
(9) Configuration confirmed by X-ray crystallography.
(10) R,R IC50 ) 0.072 uM; R,S IC50 ) 8.4 uM; S,R IC50 ) 0.470 uM.
(11) Boger, D. L.; Teramoto, S.; Cai, H. Bioorg. Med. Chem. 1996, 4, 179.
(12) Blankley, C. J.; Hodges, J. C.; Klutchko, S. R.; Himmelsbach, R. J.;
Chucholowski, A.; Connolly, C. J.; Neergaard, S. J.; Van Nieuwenhze,
M. S.; Sebastian, A.; Quin, J., III; Essenburg, A. D.; Cohen, D. M. J.
Med. Chem. 1991, 34, 3248.
(13) (a) N-3 imidazole alkylation was also accomplished using Boc-His(Trit)-
OCH3 and substituted benzyl halides: Anthony, N. J.; Gomez, R. P.;
Schaber, M. D.; Mosser, S. D.; Hamilton, K. A.; O’Neil, T. J.; Koblan,
K. S.; Graham, S. L.; Hartman, G. D.; Shah, D.; Rands, E.; Kohl, N. E.;
Gibbs, J. B.; Oliff, A. I. J. Med. Chem. 1999, 42, 3356. (b) Williams, T.
M.; Bergman, J. M.; Brashear, K.; Breslin, M. J.; Dinsmore, C. J.;
Hutchinson, J. H.; MacTough, S. C.; Stump, C. A.; Wei, D. D.; Zartman,
C. B.; Bogusky, M. J.; Culberson, J. C.; Buser-Doepner, C.; Davide, J.;
Greenberg, I. B.; Hamilton, K. A.; Koblan, K. S.; Kohl, N. E.; Liu, D.;
Lobell, R. B.; Mosser, S. D.; O’Neill, T. J.; Rands, E.; Schaber, M. D.;
Wilson, F.; Senderak, E.; Motzel, S. L.; Gibbs, J. B.; Graham, S. L.;
Heimbrook, D. C.; Hartman, G. D.; Oliff, A. I.; Huff, J. R. J. Med. Chem.
1999, 42, 3779.
methyl group was installed at the 5-position, the potency modestly
increased (15). The 3,5-dichloro analogue (16) inhibits ACE2 in
the picomolar range and has excellent selectivity (>5000-fold)
versus related enzymes.9 All four stereoisomers of 16 were prepared,
and the greatest potency remained within the S,S isomer.10
The preparation of the N-3 substituted imidazole-containing
inhibitors is outlined in Scheme 1. Treatment of (S)-histidine methyl
ester (17) with Boc2O affords the fully protected histidine derivative
18.11 Selective alkylation of the N-3 imidazole nitrogen using the
triflate of a substituted benzyl alcohol (or alkyl alcohol derivative)
provides the N-3 alkylated histidine derivative 19.12,13 Following
Boc deprotection, reductive amination between the histidine deriva-
tive 19 and the â-keto ester furnishes the diester amine.14 Hydrolysis
of this diester yields the desired amino dicarboxylate ACE2 inhibitor
(14) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah,
R. D. J. Org. Chem. 1996, 61, 3849.
(15) With some substituents, minor amounts of epimerization were observed
during ester hydrolysis.
JA0277226
9
J. AM. CHEM. SOC. VOL. 124, NO. 40, 2002 11853