Organic Letters
Letter
(13) Yoshida, S.; Fukui, K.; Kikuchi, S.; Yamada, T. Chem. Lett. 2009,
38, 786−787.
In conclusion, we have successfully developed a new strategy
for the synthesis of tetramic acid derivatives. This reaction
overcame previous obstacles encountered in synthesizing
biologically or agriculturally significant heterocyclic compounds
via alternative methods. A wide variety of substrates were
applicable to the optimized reaction conditions to afford the
corresponding tetramic acid derivatives in satisfactory yields.
The results support a proposed reaction mechanism involving
rearrangement ring opening with generation of an isocyanate
and an enolate as intermediates triggered by deprotonation of
the amide, followed by ring closure and formation of a new
carbon−carbon bond. Further investigations and applications
are currently being examined.
(14) Crystallographic data in this paper have been deposited with
Cambridge Crystallographic Data Centre as supplementary publication
no. CCDC-962553. Copies of the data can be obtained free of charge
bridge Crystallographic Data Centre, 12, Union Road, Cambridge,
(15) When propargylic amines containing an alkyl group on the
alkyne were subjected to the present reaction conditions, undesired
side reactions occurred.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and analytical data for new com-
pounds. This material is available free of charge via the Internet
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
REFERENCES
■
(1) Hostel, A.; Ganzle, M. G.; Nicholson, G. J.; Hammes, W. P.; Jung,
̈
̈
G. Angew. Chem., Int. Ed. 2000, 39, 2766−2768.
(2) Gunasekera, S. P.; Gunasekera, M.; McCarthy, P. J. Org. Chem.
1991, 56, 4830−4833.
(3) Bruck, E.; Elbert, A.; Fischer, R.; Krueger, S.; Kuhnhold, J.;
̈
̈
Klueken, A. M.; Nauen, R.; Niebes, J.-F.; Reckmann, U.; Schnorbach,
H.-J.; Steffens, R.; Waetermeulen, X. Crop Prot. 2009, 28, 838−844.
(4) (a) Royles, B. J. L. Chem. Rev. 1995, 95, 1981−2001.
(b) Schobert, R.; Schlenk, A. Bioorg. Med. Chem. 2008, 16, 4203−
4221.
(5) (a) King, J. A.; McMillan, F. H. J. Am. Chem. Soc. 1950, 72,
1236−1240. (b) Larsen, S.; Bernstein, J. J. Am. Chem. Soc. 1950, 72,
4447−4452. (c) Lacey, R. N. J. Chem. Soc. 1954, 850−854. (d) Ley, S.
V.; Smith, S. C.; Woodward, P. R. Tetrahedron 1992, 48, 1145−1174.
(e) Page, P. C. B.; Hamzah, A. S.; Leach, D. C.; Allin, S. M.; Andrews,
D. M.; Rassias, G. A. Org. Lett. 2003, 5, 353−355. (f) Spatz, J. H.;
Welsch, S. J.; Duhaut, D.-E.; Boursier, N. J. T.; Fredrich, M.;
Allmendinger, L.; Ross, G.; Kolb, J.; Burdack, C.; Umkehrer, M.
Tetrahedron Lett. 2009, 50, 1705−1707. (g) Dittmer, D. C.; Avilov, D.
V.; Kandula, V. S.; Purzycki, M. T.; Martens, Z. J.; Hohn, E. B.; Bacler,
M. W. ARKIVOC 2010, vi, 61−83.
(6) (a) Igglessi-Markopoulou, O.; Sandris, C. J. Heterocycl. Chem.
1982, 19, 883−890. (b) Williard, P. G.; de Laszlo, S. E. J. Org. Chem.
1984, 49, 3489−3493. (c) Igglessi-Markopoulou, O.; Sandris, C. J.
Heterocycl. Chem. 1985, 22, 1599−1606. (d) Li, W.-R.; Lin, S. T.; Hsu,
N.-M.; Chern, M.-S. J. Org. Chem. 2002, 67, 4702−2706.
(7) (a) Bi, X.; Zhang, J.; Liu, Q.; Tan, J.; Li, B. Adv. Synth. Catal.
2007, 349, 2301−2306. (b) Li, Y.; Xu, X.; Tan, J.; Liao, P.; Zhang, J.;
Liu, Q. Org. Lett. 2010, 12, 244−247.
(8) Xu, C.-P.; Huang, P.-Q.; Py, S. Org. Lett. 2012, 14, 2034−2037.
(9) Bai, W.-J.; Jackson, S. K.; Pettus, T. R. R. Org. Lett. 2012, 14,
3862−3865.
(10) Mao, L.; Li, Y.; Xiong, T.; Sun, K.; Zhang, Q. J. Org. Chem.
2013, 78, 733−737.
(11) Ishida, T.; Kikuchi, S.; Yamada, T. Org. Lett. 2013, 15, 3710−
3713.
(12) Ishida, T.; Kikuchi, S.; Tsubo, T.; Yamada, T. Org. Lett. 2013,
15, 848−851.
2433
dx.doi.org/10.1021/ol500806u | Org. Lett. 2014, 16, 2430−2433