Journal of the American Chemical Society
Article
(13) (a) Girard, C.; Kagan, H. B. Angew. Chem., Int. Ed. 1998, 37,
2922−2959. (b) Blackmond, D. G. Acc. Chem. Res. 2000, 33, 402−411.
(14) For examples of monomeric organocopper complexes, see:
(a) Russo, V.; Herron, J. R.; Ball, Z. T. Org. Lett. 2010, 12, 220−223.
(b) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Organometallics 2006, 25,
2405−2408. (c) Mankad, N. P.; Laitar, D. S.; Sadighi, J. P.
Organometallics 2004, 23, 3369−3371. (d) Mankad, N. P.; Gray, T.
G.; Laitar, D. S.; Sadighi, J. P. Organometallics 2004, 23, 1191−1193.
(e) Hope, H.; Olmstead, M. M.; Power, P. P.; Sandell, J.; Xu, X. J. Am.
Chem. Soc. 1985, 107, 4337−4338. (f) Rucker, R. P.; Whittaker, A. M.;
Dang, H.; Lalic, G. J. Am. Chem. Soc. 2012, 134, 6571−6574.
(g) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. J. Am. Chem. Soc. 2006, 128,
11036−11037. (h) Gurung, S. K.; Thapa, S.; Kafle, A.; Dickie, D. A.;
Giri, R. Org. Lett. 2014, 16, 1264−1267.
(28) Hartwig, J. F. Organotransition Metal Chemistry; University
Science Books: Sausalito, CA, 2010; pp 301−317.
(29) (a) Zhu, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2012, 134,
10815−10818. (b) Dattelbaum, A. M.; Martin, J. D. Inorg. Chem. 1999,
38, 6200−6205.
(30) For other examples of CuH asymmetric transformations, see:
(a) Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013,
135, 15746−15749. (b) Appella, D. H.; Moritani, Y.; Shintani, R.;
Ferreira, E. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9473−
9474. (c) Jurkauskas, V.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124,
2892−2893.
(31) Walsh, P. J.; Kozlowski, M. C. Fundamentals of Asymmetric
Catalysis; University Science Books: Sausalito, CA, 2009.
(32) DFT calculations of the sort used herein are expected to predict
relative transition-state energies for isomeric systems with kcal/mol,
sometimes sub-kcal/mol, accuracy. Errors are expected to be larger for
predictions of absolute barrier heightsoften several kcal/moland
when comparing competing unimolecular to bimolecular processes
(since one depends on the concentration of one species and the other
on the concentration of two species; accurately computing entropies
for solution reactions is also a challenge: Plata, R. E.; Singleton, D. A. J.
Am. Chem. Soc. 2015, 137, 3811−3826). Despite these caveats, we are
encouraged that the predicted barrier for hydroboration/σ-bond
metathesis with dMepe is 2 kcal/mol lower than that for migration
(hydroboration observed experimentally), while the predicted barrier
for hydroboration/σ-bond metathesis is slightly higher than that for
migration with dCype (migration observed experimentally).
(33) (a) Reetz, M. T. Angew. Chem., Int. Ed. 1972, 11, 129−130.
(b) Reetz, M. T. Angew. Chem., Int. Ed. 1972, 11, 130−131. (c) Reetz,
M. T. Tetrahedron 1973, 29, 2189−2194. (d) Reetz, M. T. Adv.
Organomet. Chem. 1977, 16, 33−65. (e) Hoffmann, R.; Williams, J. E.,
Jr. Helv. Chim. Acta 1972, 55, 67−75. (f) Buenker, R. J.; Peyerimhoff,
S. D.; Allen, L. C.; Whitten, J. L. J. Chem. Phys. 1966, 45, 2835−2847.
(g) Gutierrez, O.; Tantillo, D. J. J. Org. Chem. 2012, 77, 8845−8850.
(h) Braddock, D. C.; Roy, D.; Lenoir, D.; Moore, E.; Rzepa, H. S.; Wu,
J. I.-C.; Schleyer, P. V. R. Chem. Commun. 2012, 48, 8943−8945.
(15) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic
Chemistry; University Science Books: Sausalito, CA, 2006; pp 428−
430.
(16) Yamamoto, Y. J. Org. Chem. 2007, 72, 7817−7831.
(17) (a) Goering, H. L.; Kantner, S. S.; Seitz, E. P. J. Org. Chem.
1985, 50, 5495−5499. (b) House, H. O.; Wilkins, J. M. J. Org. Chem.
1978, 43, 2443−2454.
(18) Herron, J. R.; Ball, Z. T. J. Am. Chem. Soc. 2008, 130, 16486−
16487.
(19) Van Hoveln, R. J.; Schmid, S. C.; Schomaker, J. M. Org. Biomol.
Chem. 2014, 12, 7655.
(20) (a) Frisch, M. J.; et al. Gaussian 03, Revision D.01; Gaussian,
Inc.: Wallingford, CT, 2004. (b) Frisch, M. J.; et al. Gaussian 09,
Revision B.01; Gaussian, Inc., Wallingford, CT, 2009. See SI for full
references.
(21) (a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215−
241. (b) Karton, A.; Tarnopolsky, A.; Lamere, J.-F.; Schatz, G. C.;
Martin, J. M. L. J. Phys. Chem. A 2008, 112, 12868−12886. (c) Zhao,
Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101−194118.
(d) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 13126−
13130.
(22) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270−283.
(b) Yang, Y.; Weaver, M. N.; Merz, K. M., Jr. J. Phys. Chem. A 2009,
113, 9843−9851. (c) Su, M.-D.; Chu, S.-Y. J. Am. Chem. Soc. 1997,
119, 10178−10185. (d) Vigalok, A.; Uzan, O.; Shimon, J. W.; Ben-
David, Y.; Martin, J. M. L.; Milstein, D. J. Am. Chem. Soc. 1998, 120,
́
(i) Fernandez, I.; Cossío, F. P.; Sierra, M. A. Chem. Rev. 2009, 109,
6687−6711.
(34) (a) Leverett, C. A.; Purohit, V. C.; Johnson, A. G.; Davis, R. A.;
Tantillo, D. J.; Romo, D. J. Am. Chem. Soc. 2012, 134, 13348−13356.
(b) Davis, R. L.; Leverett, C. A.; Romo, D.; Tantillo, D. J. J. Org. Chem.
2011, 76, 7167−7174.
12539−12544. (e) Kadyrov, R.; Borner, A.; Selke, R. Eur. J. Inorg.
̈
Chem. 1999, 705−711. (f) Su, M.-D.; Chu, S.-Y. Chem.Eur. J. 1999,
5, 198−207. (g) Yu, Z.-X.; Wender, P. A.; Houk, K. N. J. Am. Chem.
Soc. 2004, 126, 9154−9155. (h) Luo, X.; Tang, D.; Li, M.
THEOCHEM 2005, 714, 61−72. (i) Luo, X.; Tang, D.; Li, M. Int. J.
(35) (a) Carpenter, B. K. Annu. Rev. Phys. Chem. 2005, 56, 57−89.
(b) Carpenter, B. K. Acc. Chem. Res. 1992, 25, 520−528. (c) Carpenter,
B. K. J. Phys. Org. Chem. 2003, 16, 858−868.
́
Quantum Chem. 2005, 105, 108−123. (j) Ardura, D.; Lopez, R.; Sordo,
T. L. J. Org. Chem. 2006, 71, 7315−7321. (k) Alagona, G.; Chio, C.;
Rocchiccioli, S. J. Mol. Model. 2007, 13, 823−837. (l) Yu, Z.-X.;
Cheong, P. H.-Y.; Liu, P.; Legault, C. Y.; Wender, P. A.; Houk, K. N. J.
Am. Chem. Soc. 2008, 130, 2378−2379. (m) Siebert, M. R.; Yudin, A.
K.; Tantillo, D. J. Eur. J. Org. Chem. 2011, 3, 553−561.
(23) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
(b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 284. (c) Hay, P. J.;
Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(24) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B
2009, 113, 6378−6396.
(25) (a) Gonzalez, C. S.; Schlegel, H. B. J. Phys. Chem. 1990, 94,
5523. (b) Fukui, K. Acc. Chem. Res. 1981, 14, 363−368. (c) Maeda, S.;
Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Int. J. Quantum
Chem. 2015, 115, 258−269.
(26) (a) Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. Rev. 2008,
108, 2916−2927. (b) Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y.
Chem.Eur. J. 2012, 18, 4179−4184. (c) Reeker, H.; Norrby, P.-O.;
Krause, N. Organometallics 2012, 31, 8024−8030.
(27) Selected examples of Cu(III) species from C−X oxidative
addition: (a) Maiti, D.; Sarjeant, A. A. N.; Itoh, S.; Karlin, K. D. J. Am.
Chem. Soc. 2008, 130, 5644−5645. (b) Casitas, A.; King, A. E.; Parella,
T.; Costas, M.; Stahl, S. S.; Ribas, X. Chem. Sci. 2010, 1, 326−330.
I
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX