2154
AMANO ET AL.
ANTIMICROB. AGENTS CHEMOTHER.
6. Ghosh, A. K., J. F. Kincaid, W. Cho, D. E. Walters, K. Krishnan, K. A.
Hussain, Y. Koo, H. Cho, C. Rudall, L. Holland, and J. Buthod. 1998. Potent
HIV protease inhibitors incorporating high-affinity P2-ligands and (R)-(hy-
droxyethylamino)sulfonamide isostere. Bioorg. Med. Chem. Lett. 8:687–690.
7. Ghosh, A. K., K. Krishnan, D. E. Walters, W. Cho, H. Cho, Y. Koo, J.
Trevino, L. Holland, and J. Buthod. 1998. Structure based design: novel
spirocyclic ethers as nonpeptidal P2-ligands for HIV protease inhibitors.
Bioorg. Med. Chem. Lett. 8:979–982.
8. Ghosh, A. K., S. Leshchenko, and M. Noetzel. 2004. Stereoselective photo-
chemical 1,3-dioxolane addition to 5-alkoxymethyl-2(5H)-furanone: synthe-
sis of bis-tetrahydrofuranyl ligand for HIV protease inhibitor UIC-94017
(TMC-114). J. Org. Chem. 69:7822–7829.
9. Ghosh, A. K., G. Schiltz, R. S. Perali, S. Leshchenko, S. Kay, D. E. Walters,
Y. Koh, K. Maeda, and H. Mitsuya. 2006. Design and synthesis of novel
HIV-1 protease inhibitors incorporating oxyindoles as the P2Ј-ligands.
Bioorg. Med. Chem. Lett. 16:1869–1873.
10. Ghosh, A. K., P. R. Sridhar, S. Leshchenko, A. K. Hussain, J. Li, A. Y.
Kovalevsky, D. E. Walters, J. E. Wedekind, V. Grum-Tokars, D. Das, Y. Koh,
K. Maeda, H. Gatanaga, I. T. Weber, and H. Mitsuya. 2006. Structure-based
design of novel HIV-1 protease inhibitors to combat drug resistance. J. Med.
Chem. 49:5252–5261.
that if an inhibitor maintains strong hydrogen bond interactions
with the wild-type protease, particularly with backbone atoms of
multiple residues that are conserved (e.g., Asp29 and Gly27), then
the loss of van der Waals contacts due to mutations may not result
in a drastic loss of binding affinity. Thus, inhibitors without mul-
tiple strong hydrogen bond interactions with wild-type protease
would be more susceptible to loss of binding due to loss of weaker
van der Waals contacts than inhibitors with multiple hydrogen
bond interactions. In this respect, we analyzed the hydrogen bond
interactions of several PIs with wild-type protease (Table 5). It is
noteworthy that only GRL-98065 and DRV have four hydrogen
bond interactions with backbone atoms of Asp29 and Asp30 and
of Asp30Ј. None of the other clinically approved PIs studied here
have more than two hydrogen bond interactions with these resi-
dues. Thus, GRL-98065 is likely to preserve the hydrogen bond
interactions and bind tightly with mutant protease.
The present data suggest that GRL-98065 has several ad-
vantages: (i) it exerts potent activity against a wide spectrum of
drug-resistant HIV-1 variants, presumably due to its interac-
tions with the main chains of the active-site amino acids Asp29
and Asp30; (ii) its unique contact with HIV-1 protease differs
from that of other PIs; (iii) the viral acquisition of resistance is
substantially delayed; and (iv) at least several PIs, including
SQV and ATV, remain active in vitro against the virus selected
in vitro with GRL-98065. It is of note that GRL-98065 pos-
sesses substantially favorable features as a potential therapeu-
tic for AIDS, as described above; however, its oral bioavail-
ability, pharmacokinetics/pharmacodynamics, biodistribution,
etc., are yet to be determined in further rigorous preclinical
and clinical testing.
11. Gong, Y. F., B. S. Robinson, R. E. Rose, C. Deminie, T. P. Spicer, D. Stock,
R. J. Colonno, and P. F. Lin. 2000. In vitro resistance profile of the human
immunodeficiency virus type 1 protease inhibitor BMS-232632. Antimicrob.
Agents Chemother. 44:2319–2326.
12. Grabar, S., L. Weiss, and D. Costagliola. 2006. HIV infection in older
patients in the HAART era. J. Antimicrob. Chemother. 57:4–7.
13. Hirsch, H. H., G. Kaufmann, P. Sendi, and M. Battegay. 2004. Immune
reconstitution in HIV-infected patients. Clin. Infect. Dis. 38:1159–1166.
14. Hong, L., J. A. Hartsuck, S. Foundling, J. Ermolieff, and J. Tang. 1998.
Active-site mobility in human immunodeficiency virus, type 1, protease as
demonstrated by crystal structure of A28S mutant. Protein Sci. 7:300–305.
15. Hong, L., X. C. Zhang, J. A. Hartsuck, and J. Tang. 2000. Crystal structure
of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into
the mechanisms of drug resistance. Protein Sci. 9:1898–1904.
16. Jones, T. A., J. Y. Zou, S. W. Cowan, and Kjeldgaard. 1991. Improved
methods for building protein models in electron density maps and the loca-
tion of errors in these models. Acta Crystallogr. A 47:110–119.
17. Kaplan, A. H., S. F. Michael, R. S. Wehbie, M. F. Knigge, D. A. Paul, L.
Everitt, D. J. Kempf, D. W. Norbeck, J. W. Erickson, and R. Swanstrom.
1994. Selection of multiple human immunodeficiency virus type 1 variants
that encode viral proteases with decreased sensitivity to an inhibitor of the
viral protease. Proc. Natl. Acad. Sci. USA 91:5597–5601.
ACKNOWLEDGMENTS
18. Koh, Y., H. Nakata, K. Maeda, H. Ogata, G. Bilcer, T. Devasamudram, J. F.
Kincaid, P. Boross, Y. F. Wang, Y. Tie, P. Volarath, L. Gaddis, R. W.
Harrison, I. T. Weber, A. K. Ghosh, and H. Mitsuya. 2003. Novel bis-
tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI)
UIC-94017 (TMC114) with potent activity against multi-PI-resistant human
immunodeficiency virus in vitro. Antimicrob. Agents Chemother. 47:3123–
3129.
19. Kovalevsky, A. Y., Y. Tie, F. Liu, P. I. Boross, Y. F. Wang, S. Leshchenko,
A. K. Ghosh, R. W. Harrison, and I. T. Weber. 2006. Effectiveness of
nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly
drug resistant mutations D30N, I50V, and L90M. J. Med. Chem. 49:1379–
1387.
20. Little, S. J., S. Holte, J. P. Routy, E. S. Daar, M. Markowitz, A. C. Collier,
R. A. Koup, J. W. Mellors, E. Connick, B. Conway, M. Kilby, L. Wang, J. M.
Whitcomb, N. S. Hellmann, and D. D. Richman. 2002. Antiretroviral-drug
resistance among patients recently infected with HIV. N. Engl. J. Med.
347:385–394.
21. Lube, A., W. P. Neumann, and M. A. Niestroj. 1995. New and regioselective
method for the synthesis of aromatic, heteroaromatic, and olefininc sulfon-
amides by electrophilic destannylation. Chem. Ber. 128:1195–1198.
22. Maeda, K., K. Yoshimura, S. Shibayama, H. Habashita, H. Tada, K. Sagawa,
T. Miyakawa, M. Aoki, D. Fukushima, and H. Mitsuya. 2001. Novel low
molecular weight spirodiketopiperazine derivatives potently inhibit R5
HIV-1 infection through their antagonistic effects on CCR5. J. Biol. Chem.
276:35194–35200.
We thank the Center for Information Technology, National Insti-
tutes of Health, for providing computational resources.
This work was supported in part by the Intramural Research Program
of the Center for Cancer Research, National Cancer Institute, National
Institutes of Health grants GM62920 and GM53386, and in part by a
Grant-in-aid for Scientific Research (Priority Areas) from the Ministry of
Education, Culture, Sports, Science, and Technology of Japan (Monbu-
Kagakusho), a Grant for Promotion of AIDS Research from the Ministry
of Health, Welfare, and Labor of Japan (Kosei-Rohdosho; H15-AIDS-
001), and a grant to the Cooperative Research Project on Clinical and
Epidemiological Studies of Emerging and Re-emerging Infectious
Diseases (Renkei Jigyo; no. 78, Kumamoto University) of Monbu-
Kagakusho, the Georgia State University Molecular Basis of Disease
Program, the Georgia Research Alliance, the Georgia Cancer Coalition,
and National Institute of Health grants GM62920 and GM53386. The
X-ray diffraction data were collected at beamline X-26C, National Syn-
chrotron Light Source. Use of the National Synchrotron Light Source,
Brookhaven National Laboratory, was supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, under
contract no. DE-AC02-98CH10886.
REFERENCES
23. Miller, J. F., C. W. Andrews, M. Brieger, E. S. Furfine, M. R. Hale, M. H.
Hanlon, R. J. Hazen, I. Kaldor, E. W. McLean, D. Reynolds, D. M.
Sammond, A. Spaltenstein, R. Tung, E. M. Turner, R. X. Xu, and R. G.
Sherrill. 2006. Ultra-potent P1 modified arylsulfonamide HIV protease in-
hibitors: the discovery of GW0385. Bioorg. Med. Chem. Lett. 16:1788–1794.
24. Navaza, J. 1994. AMoRe: an automated package for molecular replacement.
Acta Crystallogr. A 50:157–163.
1. Carr, A. 2003. Toxicity of antiretroviral therapy and implications for drug
development. Nat. Rev. Drug Discov. 2:624–634.
2. De Clercq, E. 2002. Strategies in the design of antiviral drugs. Nat. Rev.
Drug Discov. 1:13–25.
3. Erickson, J. W., and S. K. Burt. 1996. Structural mechanisms of HIV drug
resistance. Annu. Rev. Pharmacol. Toxicol. 36:545–571.
4. Friesner, R. A., J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T.
Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P.
Francis, and P. S. Shenkin. 2004. Glide: a new approach for rapid, accurate
docking and scoring. 1. Method and assessment of docking accuracy. J. Med.
Chem. 47:1739–1749.
25. Otwinowski, Z., and W. Minor. 1997. Processing of X-ray diffraction data in
oscillation mode. Methods Enzymol. 276:307–326.
26. Patick, A. K., H. Mo, M. Markowitz, K. Appelt, B. Wu, L. Musick, V. Kalish,
S. Kaldor, S. Reich, D. Ho, and S. Webber. 1996. Antiviral and resistance
studies of AG1343, an orally bioavailable inhibitor of human immunodefi-
ciency virus protease. Antimicrob. Agents Chemother. 40:292–297.
5. Fumero, E., and D. Podzamczer. 2003. New patterns of HIV-1 resistance
during HAART. Clin. Microbiol. Infect. 9:1077–1084.