ChemComm
Communication
Table 3 Gold-catalyzed formation of spiro-compounds 10–11
conversion of the substrate is increased, the rate of decomposition
of the catalyst becomes slower. Furthermore, a new record for
the gold catalyzed phenol synthesis was accomplished with a
TON of 37 000.
M. C. Blanco J. is grateful to DAAD for a fellowship. S.A.C.
Carabineiro acknowledges financial support from ‘‘Investigador
FCT’’ program. M. M. P. and R. M. B. C. thank the financial support
from FCT-Portugal and QREN/FEDER (COMPETE – Programa
Operacional Fatores de Competitividade, PTDC/QUI-QUI/112913/
˜
Entry [Au] (mol%)
T
Conversionb (%) TONb,c
1a
2a
3a
4a
0.10, 1
0.10, 2
0.10, 3
0.10, (PhO)3PAuCl
r.t.
r.t.
r.t.
r.t.
100
100
100
100
980
980
980
980 2009). Authors also thank Fundaçao das Universidades Portuguesas
˜
˜
and DAAD for the bilateral project Açao Integrada Luso-Alema
5a
6a
7a
8a
0.01, 1
0.01, 2
0.01, 3
0.01, (PhO)3PAuCl
r.t.
r.t.
r.t.
r.t.
100
100
100
100
9700
9700
2012 – Ref.a A-19/12. Gold salts were generously donated by
9600 Umicore AG & Co. KG.
9700
Notes and references
1 For recent general reviews on gold catalysis: (a) N. Krause and C. Winter,
Chem. Rev., 2011, 111, 1994; (b) A. S. K. Hashmi and M. Rudolph, Chem.
Commun., 2011, 47, 6536; (c) D. J. Gorin, B. D. Sherry and F. D. Toste,
9a
0.001, 1
0.001, 2
0.001, 3
0.001, (PhO)3PAuCl
r.t.
r.t.
r.t.
r.t.
100
97
98
96 000
94 000
96 000
60 000
10a
11a
12a
62
´
Chem. Rev., 2008, 108, 3351; (d) E. Jimenez-Nu´nez and A. M. Echavarren,
13a
14a
15a
16a
0.0001, 1
0.0001, 2
0.0001, 3
40 1C
40 1C
40 1C 100
98
98
960 000
940 000
980 000
120 000
Chem. Commun., 2007, 333; (e) A. Fu¨rstner and P. W. Davies,
Angew. Chem., 2007, 119, 3478 (Angew. Chem., Int. Ed., 2007, 46, 3410);
( f ) A. S. K. Hashmi and G. J. Hutchings, Angew. Chem., 2006, 118, 8064
(Angew. Chem., Int. Ed., 2006, 45, 7896).
0.0001, (PhO)3PAuCl 40 1C
14
2 (a) A. S. K. Hashmi and M. Rudolph, Chem. Soc. Rev., 2008, 37, 1766;
(b) A. Fu¨rstner, Chem. Soc. Rev., 2009, 38, 3208; (c) A. S. K. Hashmi
and M. Rudolph, Chem. Soc. Rev., 2012, 41, 2448.
3 A. S. K. Hashmi, Angew. Chem., 2010, 122, 5360 (Angew. Chem., Int. Ed.,
2010, 49, 5232).
4 J. H. Teles, S. Brode and M. Chabanas, Angew. Chem., 1998, 110,
1475 (Angew. Chem., Int. Ed., 1998, 37, 1415).
5 E. Mizushima, K. Sato, T. Hayashi and M. Tanaka, Angew. Chem.,
2002, 114, 4745 (Angew. Chem., Int. Ed., 2002, 41, 4563).
17d
18d
19d
0.00001, 1
0.00001, 2
0.00001, 3
40 1C
40 1C
40 1C
98
93
97
9 700 000
9 200 000
9 400 000
20d
21d
22d
0.000001, 1
0.000001, 2
0.000001, 3
40 1C
40 1C
40 1C
25
29
18
24 000 000
28 000 000
18 000 000
a
In a NMR tube using 0.1 mmol of the substrate in 500 mL of solvent.
´
6 N. Marion, R. S. Ramon and S. P. Nolan, J. Am. Chem. Soc., 2009, 131, 448.
b
A ratio of 10 : 11 = 1 : 2 determined by 1H NMR using TTBB (1,3,5-tri-
´
7 M. Bouhrara, E. Jeanneau, L. Veyre, C. Coperet and C. Thieuleux,
c
tert-butylbenzene) as internal standard. TON: n(product)/n(catalyst).
Dalton Trans., 2011, 40, 2995.
d
The reaction was carried out with 0.2 mmol of substrate in 500 mL of
8 M. C. Blanco Jaimes, C. R. N. Boehling, J. M. Serrano-Becerra and
A. S. K. Hashmi, Angew. Chem., 2013, 125, 8121 (Angew. Chem., Int. Ed.,
2013, 52, 7963).
solvent.
9 M. Comotti, C. D. Pina, R. Matarrese and M. Rossi, Angew. Chem.,
2004, 116, 5936 (Angew. Chem., Int. Ed., 2004, 43, 5812).
slight difference in the conversion at the end. That is how after
´
40 hours, catalyst 1 and 2 showed complete conversion (100%) 10 (a) J. Oliver-Meseguer, J. R. Cabrero-Antonino, I. Domınguez, A. Leyva-
´
Perez and A. Corma, Science, 2012, 338, 1452; (b) for a discussion, see:
and catalyst 3 reached 97%. The same outcome was observed at
0.000001 mol% catalyst loading when catalyst 3 achieved the
lowest TON of 18 000 000, compared to the 28 000 000 obtained
with catalyst 2. In perfect agreement with our initial hypothesis,
this difference could be explained in terms of the stabilizing
effect of the bulky19 substituents on the gold catalysts. There-
fore catalyst 3, which is bearing only adamantyl substituents,
is the less stabilized catalyst, showing a faster deactivation and
achieving lower TONs than the other two phosphite catalysts,
bearing bulkier binaphthyl substituents.
A. S. K. Hashmi, Science, 2012, 338, 1434.
¨
´
11 (a) R. M. B. Carrilho, A. R. Abreu, G. Petocz, J. C. Bayon, M. J. S. M.
´
Moreno, L. Kollar and M. M. Pereira, Chem. Lett., 2009, 38, 844;
(b) R. M. B. Carrilho, A. C. B. Neves, M. A. O. Lourenço, A. R. Abreu,
M. T. S. Rosado, P. E. Abreu, M. E. S. Eusebio, L. Kollar, J. C. Bayon and
M. M. Pereira, J. Organomet. Chem., 2012, 698, 28; (c) R. M. B. Carrilho,
´
´
´
´
G. N. Costa, A. C. B. Neves, M. M. Pereira, A. Grabulosa, J. C. Bayon,
M. Rocamora and G. Muller, Eur. J. Inorg. Chem., 2014, 1034.
12 CCDC 983150 (1) and 983151 (3).
13 (a) C. Nieto-Oberhuber, M. Munoz, E. Bunuel, C. Nevado, D. J. Cardenas
and A. M. Echavarren, Angew. Chem., Int. Ed., 2004, 43, 2402; (b) C. Nieto-
˜
˜
´
˜
´
´
˜
Oberhuber, M. P. Munoz, S. Lopez, E. Jimenez-Nu´nez, C. Nevado,
´
E. Herrero-Gomez, M. Raducan and A. M. Echavarren, Chem. – Eur. J.,
Although for this substrate the highest TON reported is
2006, 12, 1677 (corrigendum: Chem. – Eur. J., 2008, 14, 5096).
32 000 000 using NAC–gold(I) complex,8 it was proved that 14 (a) A. S. K. Hashmi, T. M. Frost and J. W. Bats, J. Am. Chem. Soc., 2000,
122, 11553; (b) A. S. K. Hashmi, T. M. Frost and J. W. Bats, Org. Lett.,
2001, 3, 3769; (c) A. S. K. Hashmi, M. Rudolph, H.-U. Siehl, M. Tanaka,
J. W. Bats and W. Frey, Chem. – Eur. J., 2008, 14, 3703–3708;
phosphorus-containing gold catalysts can achieve similar high
activity by introducing bulky substituents, which stabilize the
gold complex.
(d) A. S. K. Hashmi, T. Hengst, C. Lothschu¨tz and F. Rominger, Adv.
Synth. Catal., 2010, 352, 1315; (e) A. S. K. Hashmi, J. P. Weyrauch,
M. Rudolph and E. Kurpejovic, Angew. Chem., Int. Ed., 2004, 43, 6545;
( f ) A. S. K. Hashmi, A. Loos, S. Doherty, J. G. Knight, K. J. Robson and
F. Rominger, Adv. Synth. Catal., 2011, 353, 749; (g) S. Doherty, J. G.
Knight, A. S. K. Hashmi, C. H. Smyth, N. A. B. Ward, K. J. Robson,
S. Tweedley, R. W. Harrington and W. Clegg, Organometallics, 2010,
29, 4139; (h) A. S. K. Hashmi, A. Loos, A. Littmann, I. Braun, J. Knight,
S. Doherty and F. Rominger, Adv. Synth. Catal., 2009, 351, 576;
Our investigation supports the hypothesis that high catalytic
activity is not limited to sub-nanoparticles20 or heterogeneous
catalysis; in contrast, it can be achieved not only by NAC–gold(I)
complexes but also by homogeneous, mononuclear, phosphorus-
containing gold catalysts. The steric bulkiness of the ligand is the
crucial factor for achieving long catalyst lifetimes – not the rate of
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 4937--4940 | 4939