ChemComm
Communication
(10 mol%) as the catalyst.30 Alcohol 17 was obtained in 87%
yield and was immediately further oxidized to the desired
ketone by treatment with an excess (30 equiv.) of MnO2. Despite
a pronounced long wavelength absorption (lmax = 308 nm,
e = 28 035 MÀ1 cmÀ1 in MeCN), trienone 1 appears to be more
stable than alcohol 17 (lmax = 271 nm, e = 39 350 MÀ1 cmÀ1 in
MeCN; shoulder at lmax = 282 nm, e = 31 180 MÀ1 cmÀ1) and
could be stored for one week at À25 1C in the dark.
13 D. Comegna, E. Bedini and M. Parrilli, Tetrahedron, 2008, 64,
3381–3391.
14 For selected recent total syntheses of naturally occurring conjugated
(E,E,E)-trienes, see: (a) D. J. Del Valle and M. J. Krische, J. Am.
Chem. Soc., 2013, 135, 10986–10989; (b) C. Jahns, T. Hoffmann,
¨
S. Mu¨ller, K. Gerth, P. Washausen, G. Hofle, H. Reichenbach,
M. Kalesse and R. Mu¨ller, Angew. Chem., Int. Ed., 2012, 51,
5239–5243; (c) M. Yoshino, K. Eto, K. Takahashi, J. Ishihara and
S. Hatakeyama, Org. Biomol. Chem., 2012, 10, 8164–8174; (d) P. G. E.
Craven and R. J. K. Taylor, Tetrahedron Lett., 2012, 53, 5422–5425;
(e) H. J. Jessen, A. Schumacher, F. Schmid, A. Pfaltz and
K. Gademann, Org. Lett., 2011, 13, 4368–4370; ( f ) D. Amans,
V. Bellosta and J. Cossy, Chem. – Eur. J., 2009, 15, 3457–3473;
(g) M. T. Crimmins, H. S. Christie, A. Long and K. Chaudhary,
Org. Lett., 2009, 11, 831–834; (h) I. S. Mitchell, G. Pattenden and
J. Stonehouse, Org. Biomol. Chem., 2005, 3, 4412–4431.
In summary, the enantiomerically pure western fragment 1
of (À)-pulvomycin was synthesized in 15 linear steps. The
fragment comprises the carbohydrate part (labilose, C35–C40
)
of the natural product and one of its three triene components
(C24–C34). Should an aldol-type reaction of fragment 1 with a
suitable Eastern fragment not be successful, stannane 13 and
iodide 14 offer suitable options to connect the protected glyco-
side fragment to the rest of the molecule.
This project was supported by the Deutsche Forschungs-
gemeinschaft (Ba 1372-18/1), by the TUM Graduate School, and
by the Fonds der Chemischen Industrie. Olaf Ackermann and
Florian Mayr are acknowledged for help with the HPLC analyses.
¨
15 P. Sjolin, S. K. George, K.-E. Bergquist, S. Roy, A. Svensson and
J. Kihlberg, J. Chem. Soc., Perkin Trans. 1, 1999, 1731–1742.
16 The ketone was prepared from literature known Weinreb amide
(V. Convertino, P. Manini, W. B. Schweizer and F. Diederich,
Org. Biomol. Chem., 2006, 4, 1206–1208) by substitution with the
respective magnesium acetylide (see the ESI† for further details).
17 W. Yu, Y. Zhang and Z. Jin, Org. Lett., 2001, 3, 1447–1450.
18 K. T. Mead, Tetrahedron Lett., 1987, 28, 1019–1022.
19 Y. Oikawa, T. Yoshioka and O. Yonemitsu, Tetrahedron Lett., 1982,
23, 885–888.
20 (a) G. H. Veeneman, S. H. van Leeuwen and J. H. van Boom,
Tetrahedron Lett., 1990, 31, 1331–1334; (b) P. Konradsson, U. E.
Udodong and B. Fraser-Reid, Tetrahedron Lett., 1990, 31, 4313–4316.
21 1H-NMR data of glycoside 9 (500 MHz, CDCl3): d (ppm) = 0.09 [s, 9H;
Si(CH3)3], 0.97 [s, 9H; C(CH3)3], 0.96–0.99 (m, 3H; H3-40), 1.05 [s, 9H;
C(CH3)3], 1.30 (d, 3J = 6.3 Hz, 3H; H3-34), 1.46 (s, 3H; C(O)CH3-36),
2.12 [s, 3H; C(O)CH3-38], 3.05 (q, 3J = 6.4 Hz, 1H; H-39), 3.41
(qd, 3J = 6.3, 3.9 Hz, 1 H; H-33), 3.44 (d, 3J = 8.1 Hz, 1 H; Hb-35),
3.60 (dd, 3J = 9.8, 3.3 Hz, 1H; H-37), 4.19 (d, 3J = 3.9 Hz, 1H; H-32),
4.79 (d, 3J = 3.3 Hz, 1H; H-38), 5.06 (dd, 3J = 9.8, 8.1 Hz, 1H;
H-36), 7.23–7.27 (m, 4H; Harom), 7.30–7.48 (m, 10H; Harom),
7.55–7.58 (m, 2H; Harom), 7.60–7.65 (m, 4H; Harom), 7.69–7.73
(m, 2H; Harom).
Notes and references
1 M. Zief, R. Woodside and H. Schmitz, Antibiot. Chemother., 1957, 7,
384–386.
2 (a) E. Akita, K. Maeda and H. Umezawa, J. Antibiot., Ser. A, 1963, 16,
147–151; (b) E. Akita, K. Maeda and H. Umezawa, J. Antibiot., Ser. A,
1964, 17, 200–217.
3 J. L. Schwartz, M. Tishler, B. H. Arison, H. M. Shafer and S. Omura,
J. Antibiot., 1976, 29, 236–241.
4 R. J. Smith, D. H. Williams, J. C. J. Barna, I. R. McDermott,
K. Haegele, F. Piriou, J. Wagner and W. Higgins, J. Am. Chem. Soc.,
1985, 107, 2849–2857.
22 F. E. McDonald and M. Wu, Org. Lett., 2002, 4, 3979–3981.
5 A. Parmeggiani, I. M. Krab, S. Okamura, R. C. Nielsen, J. Nyborg and 23 B. Wang, T. M. Hansen, T. Wang, D. Wu, L. Weyer, L. Ying, M. M.
P. Nissen, Biochemistry, 2006, 45, 6846–6857.
Engler, M. Sanville, C. Leitheiser, M. Christmann, Y. Lu, J. Chen,
N. Zunker, R. D. Cink, F. Ahmed, C.-S. Lee and C. J. Forsyth, J. Am.
Chem. Soc., 2010, 133, 1484–1505.
6 For a recent review, see: K. M. G. O’Connell, J. T. Hodgkinson,
H. F. Sore, M. Welch, G. P. C. Salmond and D. R. Spring, Angew.
Chem., Int. Ed., 2013, 52, 10706–10733.
24 C.-E. Yeom, M. J. Kim, W. Choi and B. M. Kim, Synlett, 2008,
565–568.
¨
7 N. D. Priestley and S. Groger, J. Org. Chem., 1995, 60, 4951–4953.
8 (a) O. Delgado, H. M. Mu¨ller and T. Bach, Chem. – Eur. J., 2008, 14, 25 (a) H. X. Zhang, F. Guibe and G. Balavoine, J. Org. Chem., 1990, 55,
2322–2339; (b) C. Ammer and T. Bach, Chem. – Eur. J., 2010, 16,
14083–14093.
1857–1867; (b) J. R. Frost, C. M. Pearson, T. N. Snaddon, R. A. Booth
and S. V. Ley, Angew. Chem., Int. Ed., 2012, 51, 9366–9371.
´
9 S. Gross, F. Nguyen, M. Bierschenk, D. Sohmen, T. Menzel, I. Antes, 26 R. Alvarez, M. Herrero, S. Lopez and A. R. de Lera, Tetrahedron, 1998,
D. N. Wilson and T. Bach, ChemMedChem, 2013, 8, 1954–1962. 54, 6793–6810.
10 A. Parmeggiani, I. M. Krab, S. Okamura, R. C. Nielsen, J. Nyborg and 27 K. Green, J. W. Keeping and V. Thaller, J. Chem. Res., Synop., 1985,
P. Nissen, Biochemistry, 2006, 45, 6846–6857.
11 Reviews: (a) R. Berisio, A. Ruggiero and L. Vitagliano, Isr. J. Chem.,
103; K. Green, J. W. Keeping and V. Thaller, J. Chem. Res., Miniprint,
1985, 1260–1267.
2010, 50, 71–79; (b) A. Parmeggiani and P. Nissen, FEBS Lett., 2006, 28 J.-F. Betzer, F. Delaloge, B. Muller, A. Pancrazi and J. Prunet, J. Org.
580, 4576–4581. Chem., 1997, 62, 7768–7780.
12 (a) R. U. Lemieux and J.-I. Hayami, Can. J. Chem., 1965, 43, 2162–2173; 29 Reviews: (a) J. K. Stille, Angew. Chem., Int. Ed., 1986, 25, 508–524;
(b) G.-J. Boons, Contemp. Org. Synth., 1996, 3, 173–200; (c) T. K. Lindhorst,
Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH,
Weinheim, 3rd edn, 2007, pp. 157–208.
(b) T. N. Mitchell, Synthesis, 1992, 803–815; (c) V. Farina,
V. Krishnamurthy and W. J. Scott, Org. React., 1997, 50, 1–652.
30 J. K. Stille and B. L. Groh, J. Am. Chem. Soc., 1987, 109, 813–817.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 4901--4903 | 4903