ChemComm
Communication
on the concomitant self-assembly of the different Sq-based building
blocks to furnish stable multifunctional nanoparticles. They demon-
strated improved internalization in different cancer cell lines as well
as greater anticancer activity than non-functionalized Gem–Sq nano-
particles. This approach could be easily applied to other anticancer
drugs (e.g., nucleoside analogues, antifolic acid compounds, etc.),
fluorescent dyes or biologically active ligands (e.g., folic acid, anisa-
mide, small peptidic sequences, etc.). Therefore, it paves the way to
the design of various multifunctional Sq-based nanoparticles simply
by changing the nature of the functional moiety linked to the Sq.
The authors thank V. Nicolas (Plateforme Imagerie Cellulaire,
IFR 141) for help with the CLSM. The research leading to these
results received funding from the European Research Council
under the European Community’s Seventh Framework Programme
FP7/2007-2013 (Grant Agreement No. 249835). The PhD training
program in France of the University of Science and Technology of
Hanoi is acknowledged for the financial support provided to D.T.B.
The authors also thank the CNRS for financial support.
Fig. 3 Confocal microscopy images [red (Rho, a) and green (BODIPY, b)
fluorescence images] and merge of red and green fluorescence images with
the Nomarski image (c) after a 24 h incubation of HeLa cells with dual
fluorescent Gem–Sq/Biotin–Sq/Rho–Sq/Chol–BODIPY N2* nanoparticles.
Notes and references
1 O. C. Farokhzad and R. Langer, ACS Nano, 2009, 3, 16.
2 (a) M. Elsabahy and K. L. Wooley, Chem. Soc. Rev., 2012, 41, 2545;
(b) V. Torchilin, Pharm. Res., 2007, 24, 1; (c) A. Samad, Y. Sultana and
M. Aqil, Curr. Drug Delivery, 2007, 4, 297; (d) J. Nicolas, S. Mura,
D. Brambilla, N. Mackiewicz and P. Couvreur, Chem. Soc. Rev., 2013,
42, 1147.
3 A. Albert, Nature, 1958, 182, 421.
4 F. Bensaid, O. Thillaye du Boullay, A. Amgoune, C. Pradel, L. Harivardhan
´
Reddy, E. Didier, S. Sable, G. Louit, D. Bazile and D. Bourissou,
Biomacromolecules, 2013, 14, 1189.
ˇ
ˇ
´
5 (a) J. Kopecek and P. Kopeckova, Adv. Drug Delivery Rev., 2010,
62, 122; (b) R. Duncan, Nat. Rev. Cancer, 2006, 6, 688; (c) M. J. Vicent
and R. Duncan, Trends Biotechnol., 2006, 24, 39.
Fig. 4 Viability assay (MTT test) on HeLa (a), M109 (b) and MCF-7 (c) cells
with increasing concentrations of free Gem, Gem–Sq nanoparticles N4,
Biotin–Sq/Rho–Sq nanoparticles N5 and nanoparticles N1*.
6 (a) R. Tong and J. Cheng, Angew. Chem., Int. Ed., 2008, 47, 4830;
(b) R. Tong and J. Cheng, J. Am. Chem. Soc., 2009, 131, 4744.
7 (a) S. Harrisson, J. Nicolas, A. Maksimenko, D. T. Bui, J. Mougin and
P. Couvreur, Angew. Chem., Int. Ed., 2013, 52, 1678; (b) D. T. Bui,
A. Maksimenko, D. Desmaele, S. Harrisson, C. Vauthier, P. Couvreur
and J. Nicolas, Biomacromolecules, 2013, 14, 2837.
activity on HeLa, M109 and MCF7 cancer cells by means of the MTT
assay and compared to free Gem, Gem–Sq nanoparticles N4 (Dz =
140 nm, PSD = 0.14) and control Biotin–Sq/Rho–Sq nanoparticles N5
(see Table S1).† While control nanoparticles N5 showed no cytotoxicity,
targeted nanoparticles N1* exhibited superior anticancer activity for all
three cell lines compared to Gem–Sq nanoparticles (Fig. 4). Although
improvement with M109 cells was rather modest, higher cytotoxicity
was observed on HeLa and MCF7 cells. For instance, IC50 of targeted
nanoparticles N1* was 330 Æ 12 nM for HeLa cells, whereas Gem–Sq
nanoparticles displayed an IC50 value of 710 Æ 42 nM. This shows that
biotin-functionalized nanoparticles were able to enter cancer cells
more efficiently, likely via biotin receptors, than non-functionalized
nanoparticles. The observation that nanoparticles were less cytotoxic
than free Gem was not surprising, due to their prodrug nature
(i.e., hydrolysis of the amide bond between Sq and Gem must occur
to release the active Gem), with however IC50 values remaining in the
8 (a) P. Couvreur, B. Stella, L. H. Reddy, H. Hillaireau, C. Dubernet,
¨
ˆ
D. Desmaele, S. Lepetre-Mouelhi, F. Rocco, N. Dereuddre-Bosquet,
P. Clayette, V. Rosilio, V. Marsaud, J.-M. Renoir and L. Cattel, Nano
Lett., 2006, 6, 2544; (b) P. Couvreur, L. H. Reddy, S. Mangenot,
J. H. Poupaert, D. Desmaele, S. Lepetre-Mouelhi, B. Pili, C. Bourgaux,
H. Amenitsch and M. Ollivon, Small, 2008, 4, 247.
¨
9 (a) J. L. Arias, L. H. Reddy, M. Othman, B. Gillet, D. Desmaele, F. Zouhiri,
F. Dosio, R. Gref and P. Couvreur, ACS Nano, 2011, 5, 1513; (b) L. H.
Reddy, H. Khoury, A. Paci, A. Deroussent, H. Ferreira, C. Dubernet,
X. Decleves, M. Besnard, H. Chacun, S. Lepetre-Mouelhi, D. Desmaele,
B. Rousseau, C. Laugier, J.-C. Cintrat, G. Vassal and P. Couvreur, Drug
Metab. Dispos., 2008, 36, 1570; (c) L. H. Reddy, P.-E. Marque, C. Dubernet,
S.-L. Mouelhi, D. Desmaele and P. Couvreur, J. Pharmacol. Exp. Ther.,
´
¨
2008, 325, 484; (d) N. Semiramoth, C. D. Meo, F. Zouhiri, F. Saıd-Hassane,
S. Valetti, R. Gorges, V. Nicolas, J. H. Poupaert, S. Chollet-Martin,
¨
D. Desmaele, R. Gref and P. Couvreur, ACS Nano, 2012, 6, 3820;
(e) F. Bekkara-Aounallah, R. Gref, M. Othman, L. H. Reddy, B. Pili,
V. Allain, C. Bourgaux, H. Hillaireau, S. Lepetre-Mouelhi, D. Desmaele,
J. Nicolas, N. Chafi and P. Couvreur, Adv. Funct. Mater., 2008, 18, 3715.
nanomolar range. Note that the small amounts of Biotin–Sq and 10 L. W. Hertel, G. B. Boder, J. S. Kroin, S. M. Rinzel, G. A. Poore,
G. C. Todd and G. B. Grindey, Cancer Res., 1990, 50, 4417.
11 T. Nguyen and M. B. Francis, Org. Lett., 2003, 5, 3245.
12 G. Russell-Jones, K. McTavish, J. McEwan, J. Rice and D. Nowotnik,
Rho–Sq in N1* are unlikely to alter the Gem release from Gem–Sq
nanoparticles in biological media.8a
For the first time, therapeutic, fluorescent and targeted nano-
particles based on the naturally occurring Sq, using biotin as a
cancer cell recognition ligand and rhodamine as a fluorescent
moiety, have been prepared. The method is very simple and relies
J. Inorg. Biochem., 2004, 98, 1625.
13 E. S. Lee, K. Na and Y. H. Bae, Nano Lett., 2005, 5, 325.
14 H. Hillaireau and P. Couvreur, Cell. Mol. Life Sci., 2009, 66, 2873.
15 L. Bildstein, V. Marsaud, H. Chacun, S. Lepetre-Mouelhi, D. Desmaele,
P. Couvreur and C. Dubernet, Soft Matter, 2010, 6, 5570.
5338 | Chem. Commun., 2014, 50, 5336--5338
This journal is ©The Royal Society of Chemistry 2014