ACS Medicinal Chemistry Letters
Letter
receptor and have the potential to be potent leads for
developing effective therapeutic agents including cancer
therapy.
ASSOCIATED CONTENT
■
S
* Supporting Information
Syntheses and characterization data for compound 9; X-ray and
assay protocols. This material is available free of charge via the
AUTHOR INFORMATION
■
Corresponding Author
Figure 8. Structure of MK-4256 and its human and mouse SST3
antagonism activity. StD is standard deviation.
Notes
antagonism IC50, 0.95 nM (83% inhibition @ 2 μM), mouse
antagonism IC50, 0.46 nM (87% inhibition @ 2 μM), and
human agonism (6% activation @ 20 μM)) reduced blood
glucose levels (97% reduction of glucose excursion at 1 mg/kg)
during a mouse oral glucose tolerance test (OGTT) (Figure 9,
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Dr. Jian Liu at Merck Research Laboratories for
helpful discussions.
REFERENCES
■
(1) Hoyer, D.; Bell, G. I.; Berelowitz, M.; Epelbaum, J.; Feniuk, W.;
Humphrey, P. P.; O’Carroll, A. M.; Patel, Y. C.; Schonbrunn, A.;
Taylor, J. E.; Reisine, T. Classification and nomenclature of
somatostatin receptors. Trends Pharmacol. Sci. 1995, 16 (3), 86−88.
(2) Brazeau, P.; Vale, W.; Burgus, R.; Ling, N.; Butcher, M.; Rivier, J.;
Guillemin, R. Hypothalamic polypeptide that inhibits the secretion of
immunoreactive pituitary growth hormone. Science 1973, 179 (68),
77−79.
(3) Olias, G.; Viollet, C.; Kusserow, H.; Epelbaum, J.; Meyerhof, W.
Regulation and function of somatostatin receptors. . Neurochem. 2004,
89, 1057−1091.
(4) Reisine, T.; Bell, G. I. Molecular biology of somatostatin
receptors. Endocr. Rev. 1995, 16 (4), 427−442.
(5) Mandarino, L.; Stenner, D.; Blanchard, W.; Nissen, S.; Gerich, J.;
Ling, N.; Brazeau, P.; Bohlen, P.; Esch, F.; Guillemin, R. Selective
effects of somatostatin-14, -25, and -28 on in vivo insulin and glucagon
secretion. Nature 1981, 291, 76−77.
(6) Bloom, S.; Mortimer, C.; Thorner, M.; Besser, G.; Hall, R.;
Gomez-Pan, A.; Roy, U.; Russel, R.; Coy, D.; Kastin, A.; Schally, A.
Inhibition of gastrin and gastric acid secretion by growth hormone
release-inhibiting hormone. Lancet 1974, 2, 1106−1109.
(7) Renaud, L.; Martin, J.; Brazeau, P. Depressant action of TRH,
LHRH and SRIF on activity of central neurons. Nature 1975, 255,
233−235.
Figure 9. Compound (1R,2S)-9 increased glucose excursion in mouse
oGTT model. For MK-4256, P < 0.005 via ANOVA and Dunnett’s
test.
(8) Dodd, J.; Kelly, J. Is somatostatin an excitatory transmitter in the
hippocampus? Nature 1978, 273, 674−677.
(9) Weckbecker, G.; Lewis, I.; Albert, R.; Schmid, H. A.; Hoyer, D.;
Bruns, C. Opportunities in somatostatin research: biological, chemical,
and therapeutic aspects. Nat. Rev. Drug Discovery 2003, 2, 999−1017.
(10) For a recent review of subtype selective somatostatin receptor
ligands see: Wolkenberg, S. E.; Thut, C. J. Recent progress in the
discovery of selective non-peptide ligands of somatostatin receptors.
Current Opin. Drug Discovery Dev. 2008, 11 (4), 446−457.
(11) Patel, Y. C.; Wheatley, T. In vivo and in vitro plasma
disappearance and metabolism of somatostatin-28 and somatostatin-14
in the rat. Endocrinology 1983, 112, 220−225.
the black bar represents the glucose excursion when the mice
were challenged orally with dextrose only (5 g/kg)).26
Therefore, SST3 agonists would, in theory, increase blood
glucose levels during OGTT. Indeed, when (1R,2S)-9 (10 mg/
kg) was subjected to mouse OGTT (by oral gavage, 30 min
prior to glucose loading), it increased blood glucose level by
28% (Figure 9) relative to dextrose alone. The plasma
concentrations of (1R,2S)-9 were determined at the completion
of the OGTT study (2.5 h postadministration) and found to be
low (0.007 μM).
In summary, a novel class of small-molecule, highly potent,
and subtype-selective somatostatin SST3 agonists has been
described. Compound (1R,2S)-9 also demonstrated in vivo
SST3 agonist activity in a mouse OGTT model. These agonists
are useful tools for studying the physiological roles of the SST3
(12) Bauer, W.; et al. SMS 201−995: a very potent and selective
analogue of somatostatin with prolonged action. Life Sci. 1982, 31,
1134−1140.
(13) Rohrer, S. P.; Birzin, E. T.; Mosley, R. T.; Berk, S. C.; Hutchins,
S. M.; Shen, D.-M.; Xiong, Y.; Hayes, E. C.; Parmar, R. M.; Foor, F.;
Mitra, S. W.; et al. Rapid identification of subtype-selective agonists of
the somatostatin receptor through combinatorial chemistry. Science
1998, 282, 737−740.
694
dx.doi.org/10.1021/ml500079u | ACS Med. Chem. Lett. 2014, 5, 690−695