Page 3 of 4
ChemComm
DOI: 10.1039/C3CC47517D
Table 1 Photochemical data, Eyring parameters for substituted norbornadienes 3a-f determined in toluene.
Entry
εmax [M−1cm−1
]
Aaonset [nm]
∆H‡ [kJ/mol]
∆S‡ [J/mol]
tb1/2
φc [%]
3a
3b
3c
3d
3e
8.0×103 (308 nm)
9.0×103 (309 nm)
7.2×103 (318 nm)
9.5×103 (350 nm)
10.1×103 (365 nm)
389
402
414
431
462
108.8 ± 2.3
106.7 ± 1.8
97.1 ± 8.9
106.5 ± 2.9
43.1 ± 13.7
−8.8 ± 6.5
42.9 days
31.3 days
2.9 days
8.7 days
1.9 h
60.2 ± 1.5
72.0 ± 3.7
75. ± 2.2
61.6 ± 0.1
45.8 ± 0.2
−13.1 ± 5.0
−25.18 ± 25.2
−2.9 ± 8.0
−176.9 ± 39.0
a) Absorption onset defined as log(ε) = 2. b) determined from Eyring parameters at 25◦C. c) Measured in toluene at 366 nm (FWHM = 10
nm), yielding a photon flux of 2.16 nE/s.
was increased to 99.6 %. Preferably a catalyst that activates
the back-isomerization and simultaneously minimizes degra-
dation should be optimized. As there already exists many
known catalysts for the quadricyclane-norbornadiene isomer-
ization17,22,28,29 we believe that this is possible.
References
1 N. Lewis and D. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2006, 103,
15729–15735.
2 T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets and
D. G. Nocera, Chem. Rev., 2010, 110, 6474–6502.
To demonstrate the MOST energy storage concept, at a
larger scale, a parabolic solar-collector (26×32 cm) was con-
structed and fitted with a glass pipe as a continuous flow re-
actor (isometric drawing in figure S5 in ESI†). Molecule 3c
was dissolved in toluene (0.1 % w/v) and the solution was
pumped through the glass pipe while the set-up was irradiated
by a large area solar-simulator lamp (EYE Lighting Interna-
tional). Quantitative conversion was achieved at 60 min resi-
dence time (described in figure S6 in ESI†). This experiment
demonstrates the potential use of aryl-substituted norbornadi-
enes for MOST energy storage under natural irradiation con-
ditions.
3 S. M. Amin and A. M. Giacomoni, Fundamentals of Materials for En-
ergy and Environmental Sustainability, Cambridge University Press, New
York, 1st edn, 2012, ch. 42, pp. 578–593.
4 T. J. Kucharski, Y. Tian, S. Akbulatov and R. Boulatov, Energy Environ.
Sci., 2011, 4, 4449–4472.
5 K. Bo¨rjesson, A. Lennartson and K. Moth-Poulsen, ACS Sustainable
Chem. Eng., 2013, ASAP, 585–590.
6 R. Boese, J. K. Cammack, A. J. Matzger, K. Pflug, W. B. Tolman, K. P. C.
Vollhardt and T. W. Weidman, J. Am. Chem. Soc., 1997, 119, 6757–6773.
7 M. R. Harpham, et. al, Angew. Chem. Int. Ed. Engl., 2012, 51, 7692–7696.
8 K. Bo¨rjesson, D. Dzebo, B. Albinsson and K. Moth-Poulsen, J. Mater.
Chem. A, 2013, 1, 8521–8524.
9 K. Moth-Poulsen, D. Coso, K. B
o¨rjesson, N. Vinokurov, S. K. Meier,
A. Majundar, K. P. C. Vollhardt and R. A. Sealman, Energy Environ. Sci.,
2012, 5, 8534–8537.
10 I. John Olmsted, J. Lawrence and G. G. Yee, Solar Energy, 1983, 30,
In summary, five diaryl-substituted norbornadienes have
been scrutinized for molecular solar thermal (MOST) energy
storage. The new push-pull conjugated system in these nor-
bornadienes resulted in a maximum red-shift of the absorption
onset of 195 nm, to 462 nm and enables the isomerization
to be driven by sunlight. We also constructed a continuous
flow solar-collector, utilizing norbornadiene 3c as the active
specimen, to demonstrate a large scale, solar-collecting part,
of a MOST energy storage system. Future work in this
regard will be devoted to further demonstrate the concepts
of closed-cycle energy storage. Further optimization of
the norbornadiene system is also necessary, especially the
thermal stability and cyclability must be improved in order
to demonstrate a fully working, closed-cycle, MOST energy
storage system.
271–274.
11 A. M. Kolpak and J. C. Grossman, Nano Lett., 2011, 11, 3156–3162.
12 A. M. Kolpak and J. C. Grossman, J. Chem. Phys., 2013, 138, 034303–
(1–6).
13 E. Durgun and J. C. Grossman, J. Phys. Chem. Lett., 2013, 4, 854–860.
14 A. D. Dubonosov, V. A. Bren and V. A. Chernoivanov, Russ. Chem. Rev.,
2002, 71, 917–927.
15 R. R. Hautala, J. Little and E. Sweet, Solar Energy, 1977, 19, 503–508.
16 L. R. Canas and D. B. greenberg, Solar Energy, 1985, 34, 93–99.
17 Z.-I. Yoshida, J. Photochem., 1985, 29, 27–40.
18 Y. Harel, A. W. Adamson, C. Kutal, P. A. Grutsch and K. Yasufuku, J.
Phys. Chem., 1987, 91, 901–904.
19 H. Ikezawa, C. Kutal, K. Yasufuku and H. Yamazaki, J. Am. Chem. Soc.,
1986, 108, 1589–1594.
20 T. Nagai, K. Fujii, I. Takahashi and M. Shimada, Bull. Chem. Soc. Jpn.,
2001, 74, 1637–1678.
21 S. Miki, Y. Asako and Z.-I. Yoshida, Chem. Lett., 1987, 16, 195–198.
22 K. Maruyama, K. Terada and Y. Yamamoto, Chem. Lett., 1981, 10, 839–
842.
23 G. K. Tranmer, C. Yip, S. Handerson, R. W. Jordan and W. Tam, Can. J.
Chem., 2000, 78, 527–535.
The authors would like to acknowledge funding from
Chalmers Materials Area of Advance, the Swedish Energy
Agency and Swedish Research Council (B0361301). The
authors would like to thank prof. Nina Kann for the support in
purification of compound 3d and Gustave Holmqvist, Reine
Nohlborg and Jan Bragee for their valuable comments on the
design and production of the solar concentrator.
24 W.-J. Yoo, G. C. Tsui and W. Tam, New J. Chem., 2005, 2005, 1044–1051.
25 G. Kaupp and H. Prinzbach, Chem. Ber., 1971, 104, 182–204.
26 C. A. Parker, Proc. R. Soc. A, 1953, 220, 104–116.
27 C. G. Hatchard and C. A. Parker, Proc. R. Soc. A, 1956, 235, 518–536.
28 K. Maruyama, H. Tamiaki and S. Kawabata, J. Org. Chem., 1985, 50,
1–4 | 3