Chemical Science
Edge Article
room temperature, unlike previous soluble bis-peptide catalysts
that required cryogenic conditions for selectivity, and immobi-
lized metallopeptide catalysts can be easily separated by ltra-
tion. These advances are all made possible by the power of
on-bead catalyst discovery, which enable us to synthesize and
assess catalysts in 96-well-plate format in a matter of days.
Work in metallopeptide design and catalysis is oen moti-
vated by the inspiration of natural metalloenzymes. Metal-
loenzymes use large polypeptide structure to provide steric
screening and to control access to the active site, resulting in
largely site-isolated active sites. Minimalist peptide ligands are
rarely able to replicate this aspect of natural enzymes. Our data
suggest that by employing an on-bead strategy, we are able to
build enzyme-like site isolation into a metallopeptide catalyst,
avoiding destructive intermolecular interactions in the process.
Together with modern analytical tools that can assess structure
of solid-supported materials, it is possible that metalloenzyme
2 Z. Wang, K. Ding and Y. Uozumi, in Handbook of Asymmetric
Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co.
KGaA, 2008, pp. 1–24.
3 P. Mastrorilli and C. F. Nobile, Coord. Chem. Rev., 2004, 248,
377–395.
`
4 D. Castellnou, M. Fontes, C. Jimeno, D. Font, L. Sola,
`
X. Verdaguer and M. A. Pericas, Tetrahedron, 2005, 61,
12111–12120.
5 S. H. Hong, A. G. Wenzel, T. T. Salguero, M. W. Day and
R. H. Grubbs, J. Am. Chem. Soc., 2007, 129, 7961–7968.
6 P. J. Deuss, R. den Heeten, W. Laan and P. C. Kamer,
Chemistry, 2011, 17, 4680–4698.
7 F. Rosati and G. Roelfes, ChemCatChem, 2010, 2, 916–927.
8 C. M. Thomas and T. R. Ward, Chem. Soc. Rev., 2005, 34, 337–
346.
9 J. Steinreiber and T. R. Ward, Coord. Chem. Rev., 2008, 252,
751–766.
design elds would benet from increased use of immobilized 10 T. R. Ward, Acc. Chem. Res., 2010, 44, 47–57.
platforms for catalyst development.
11 A. Mori, H. Abet and S. Inoue, Appl. Organomet. Chem., 1995,
9, 189–197.
This work represents the rst use of an axial-binding
component in ligand design to control rhodium(II) diazo 12 Z. T. Ball, Acc. Chem. Res., 2012, 46, 560–570.
chemistry. This result opens up new possibilities for ligand 13 P. J. Deuss, R. den Heeten, W. Laan and P. C. J. Kamer, Chem.
design, in contrast to a previous report that concluded that one
axial ligand results in an inactive catalyst.23 Computational 14 R. Sambasivan and Z. T. Ball, J. Am. Chem. Soc., 2010, 132,
modelling suggests that the presence of the key histidine 9289–9291.
residue orchestrates a switch from helix to turn-like structure 15 R. Sambasivan and Z. T. Ball, Angew. Chem., Int. Ed., 2012,
upon binding to the rhodium core. This approach would not 51, 8568–8572.
have been possible in solution, where intermolecular histidine 16 R. Sambasivan and Z. T. Ball, Org. Biomol. Chem., 2012, 10,
interactions conspire to result in ill-dened, nonselective 8203–8206.
– Eur. J., 2011, 17, 4680–4698.
aggregates. Immobilized ligand discovery facilitates ligand 17 R. Sambasivan and Z. T. Ball, Chirality, 2013, 25, 493–497.
screening, but also allows the discovery of selective chelating 18 P. Krattiger, R. Kovasy, J. D. Revell, S. Ivan and
ligands, under site-isolated conditions, that suffer from
competing aggregation or other intermolecular interactions in 19 J. D. Revell, D. Gantenbein, P. Krattiger and H. Wennemers,
solution. Ligand classes involving macrocyclic chelates or Biopolymers, 2006, 84, 105–113.
lacking strong preorganization might be especially amenable to 20 M. Wiesner, J. D. Revell and H. Wennemers, Angew. Chem.,
H. Wennemers, Org. Lett., 2005, 7, 1101–1103.
this type of an immobilized catalyst discovery approach.
Int. Ed., 2008, 47, 1871–1874.
21 A. N. Zaykov and Z. T. Ball, Tetrahedron, 2011, 67, 4397–
4401.
22 V. N. G. Lindsay, C. Nicolas and A. B. Charette, J. Am. Chem.
Soc., 2011, 133, 8972–8981.
Acknowledgements
We thank Prof. Angel Marti and Avishek Saha for assistance
with diffuse reectance measurements. We acknowledge 23 For a contradictory analysis of axial ligands in rhodium
nancial and computing resources from West Virginia Univer-
sity (B.V.P.) and nancial support from the Robert A. Welch
Foundation Research Grant C-1680 (Z.T.B.) and Research Grant
metallocarbene chemistry, see: M. C. Pirrung, H. Liu and
A. T. Morehead, J. Am. Chem. Soc., 2002, 124, 1014–
1023.
C-1570 (C.C.). This work was supported by the National Science 24 A. F. Trindade, J. A. S. Coelho, C. A. M. Afonso, L. F. Veiros
Foundation under grant numbers CHE-1055569 (Z.T.B.), CHE- and P. M. P. Gois, ACS Catal., 2012, 2, 370–383.
1152344 (C.C.) and CHE-1265929 (C.C.). C.T. acknowledges 25 P. M. P. Gois, A. F. Trindade, L. F. Veiros, V. Andre,
´
partial support of this work by the Chemical Sciences, Geo-
M. T. Duarte, C. A. M. Afonso, S. Caddick and
sciences and Biosciences Division, Office of Basic Energy
F. G. N. Cloke, Angew. Chem., Int. Ed., 2007, 46, 5750–5753.
Sciences, Office of Science, U.S. Department of Energy (Grant 26 A. M. Dennis, R. A. Howard and J. L. Bear, Inorg. Chim. Acta,
no. DE-FG02-13ER16423).
1982, 66, L31–L34.
27 K. Das and J. L. Bear, Inorg. Chem., 1976, 15, 2093–2095.
28 B. M. Trost and R. W. Warner, J. Am. Chem. Soc., 1982, 104,
6112–6114.
Notes and references
1 I. F. J. Vankelecom and P. A. Jacobs, in Chiral Catalyst 29 M. C. Pirrung and A. T. Morehead, J. Am. Chem. Soc., 1996,
Immobilization and Recycling, Wiley-VCH Verlag GmbH,
2007, pp. 19–42.
118, 8162–8163.
30 B. V. Popp and Z. T. Ball, Chem. Sci., 2011, 2, 690–695.
1406 | Chem. Sci., 2014, 5, 1401–1407
This journal is © The Royal Society of Chemistry 2014