1776
Russ.Chem.Bull., Int.Ed., Vol. 62, No. 8, August, 2013
Yakovenko et al.
was stirred for 1 h at 0 С, then toluene was removed, and the
residue was dissolved in hexane (30 mL). After the substance was
recrystallized from hexane at –10 С, product 2 was isolated as
yellow crystals (0.21 г, 47%). Found (%): C, 63.25; H, 8.20;
Y, 12.26. C38H62N3OSi2Y. Calculated (%): C, 63.21; H, 8.66;
Y, 12.31. IR (Nujol), /cm–1: 1651 (s), 1595 (m), 1531 (s),
1483 (m), 1423 (m), 1384 (s), 1323 (m), 1259 (w), 1246 (w),
1233 (w), 1196 (w), 1151 (w), 1132 (w), 1107 (w), 1096 (w),
1080 (w), 1059 (w), 1018 (w), 949 (w), 937 (w), 891 (w), 819 (w),
806 (w), 789 (m), 750 (w), 667 (w), 650 (w), 606 (w). 1Н NMR
Sciences and the Division of Chemistry and Materials Sciꢀ
ence of the Russian Academy of Sciences).
References
1. H. Schumann, J. A. MeeseꢀMarktscheffel, L. Esser, Chem.
Rev., 1995, 95, 865.
2. S. Arndt, J. Okuda, Chem. Rev., 2002,102, 1953.
3. J. Okuda, Dalton Trans., 2003, 2367.
4. Z. Hou, Y. Wakatsuki, Coord. Chem. Rev., 2002, 231, 1.
5. H. J. Yasuda., Organomet. Chem., 2002, 647, 128.
6. G. A. Molander Romero, J. A. C., Chem. Rev., 2002, 102, 2161.
7. T. E. Mueller, M. Beller, Chem. Rev., 1998, 98. 675.
8. K. N. Harrison, T. J. Marks, J. Am. Chem. Soc., 1992,
114, 9220.
(200 MHz, 20 С, benzeneꢀd6), : –0.64 (d, 4 Н, YCH2, 2JY,H
= 2.62 Hz); –0.13 (s, 18 H, Si(CH3)3); 1.32—1.36 (m, 34 H,
МеPri, Ме t, ꢀСH (THF); 3.44 (sept, 2 H, CHPr
3JH,H
=
,
i
,
=
Bu
2
= 6.8 Hz)); 3.53 (br.s, 4 H, ꢀСH2 (THF), 6.64—7.63 (m, 8 H,
СНAr), 8.95 (dd, 1 H, СНAr
,
3JH,H = 4.6 Hz). 13C NMR
(50 MHz, 20 С, benzeneꢀd6), : 3.8 (Si(CH3)3); 23.4, 23.9,
25.0, 25.3, 26.9, 27.6, 28.0, 29.2, 29.7, 30.5 (d, YCH2,
2JYC = 38.0 Hz); 68.42 (ꢀСH2 (THF)); 117.7, 118.9, 120.5,
120.6, 122.8, 123.6, 124.0 (CHAr); 125.3 (CAr); 130.0 (CAr);
138.5 (CHAr); 139.4, 140.9, 144.8, 148.3 (CAr); 149.4 (CHAr);
178.1 (CN2).
9. M. R. Douglass, T. J. Marks, J. Am. Chem. Soc., 2000,
122, 1824.
10. W. E. Piers, D. J. H. Emslie, Coord. Chem. Rev., 2002.
233, 131.
11. P. Mountford, B. D. Ward, Chem. Commun., 2003, 1797.
12. F. T. Edelmann, Organomet. Chem., 2008, 57, 183.
13. F. T. Edelmann, Chem. Soc. Rev., 2009, 38, 2253.
14. J. R. Hagadorn, J. Arnold, Organometallics, 1996, 15, 984.
15. Y. Luo, J. Baldamus, Z. Hou, J. Am. Chem. Soc., 2004,
126, 13910.
16. X. Li, J. Baldamus, Z. Hou, Angew. Chem., Int. Ed., 2005, 962.
17. M. V. Yakovenko, A. A. Trifonov, E. Kirillov, T. Roisnel,
J.ꢀFrançois Carpentier, Inorg. Chim. Acta, 2012, 383, 137.
18. S. Bambirra, M. W. Bouwkamp, A. Meetsma, B. Hessen,
J. Am. Chem. Soc., 2004, 126, 9182.
19. C. J. Schaverien, Organometallics, 1992, 11, 3476.
20. S. Hajela, W. P. Schaefer, J. E. Bercaw, J. Organomet. Chem.,
1997, 532, 45.
21. M. Ephritikhine, Chem. Rev., 1997, 97, 2193.
22. M. V. Yakovenko, A. V. Cherkasov, G. K. Fukin, D. Cui,
A. A. Trifonov, Eur. J. Inorg. Chem., 2010, 21, 3290.
23. P. H. M. Budzelaar; A. B. van Oort., A. G. Orpen, Eur. J.
Inorg. Chem., 1998, 10, 1485.
24. F. A. Allen, O. Konnard, D. G. Watson, L. Brammer,
G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans., 1987, 1.
25. M. F. Lappert, R. J. Pearce, J. Chem. Soc., Chem. Commun.,
1973, 126. 26.
26 A. A. Trifonov, D. M. Lyubov, G. K. Fukin, E. V. Baranov,
Yu. A. Kurskii,Organometallics, 2006, 25, 3935.
27. D. M. Lyubov, G. K. Fukin, A. A. Trifonov, Inorg. Chem.,
2007, 46, 26, 11451.
28. G. M. Sheldrick, SHELXTL v. 6.12, Structure Determination
Software Suite, Bruker AXS, Madison, Wisconsin, USA. 2000.
29. Agilent Technologies. CrysAlis Pro; Agilent Technologies
Ltd, Yarnton, England, 2011.
30. G. M. Sheldrick, SADABS v.2.01, Bruker/Siemens Area Deꢀ
tector Absorption Correction Program, Bruker AXS, Madiꢀ
son, Wisconsin, USA, 1998.
Polymerization of isoprene (general procedure). Complex 2
(28.13 mg, 0.039 mmol) and borate (B(C6F5)3, [HNEt2]ꢀ
[B(C6H5)4], or [CPh3][B(C6F5)4] (0.039 mmol) were dissolved
in toluene (5 mL). A solution of AlR3 (R = Bui, Et) (1.1 mL,
1.76 mol L–1, 1.9 mmol) in hexane and isoprene (0.98 mL, 0.66 g,
9.7 mmol) were added to the obtained solution. After stirring for
24 h at room temperature, ethanol (10 mL) was added to the
reaction mixture, the solvent was removed, and the residue was
dried in vacuo at room temperature. The NMR analysis of the
residue showed than the substance contained no isoprene.
Xꢀray diffraction experiment. Xꢀray diffraction studied for
compounds 1 and 2 were carried out on Bruker Smart Apex
(for 1, graphite monochromator, scan mode, МоꢀК radiaꢀ
tion, = 0.71073 Å) and Agilent Xcalibur E (for 2, graphite
monochromator, scan mode, МоꢀК radiation, = 0.71073 Å)
diffractometer. The structures were solved by a direct method
and refined by least squares for F2hkl in the anisotropic approxiꢀ
mation for all nonꢀhydrogen atoms. All hydrogen atoms in comꢀ
pounds 1 (except H(2)) and 2 were placed in geometrically calꢀ
culated positions and isotropically refined in the riding model.
The Н(2) atom was found from the difference electron density
synthesis and refined isotropically. The calculations were perꢀ
formed using the SHELXTL28 (1) and CrysAlis Pro29 (2) proꢀ
gram packages. The SADABS30 (1) and ABSPACK29 (CrysAlis
Pro) (2) programs were used to apply absorption corrections.
The crystallogrpahic data and parameters of Xꢀray diffraction
experiments and refinement for the synthesized compounds are
given in Table 2.
This work was financially supported by the Russian
Foundation for Basic Research (Project Nos 11ꢀ03ꢀ00555ꢀa,
12ꢀ03ꢀ31865ꢀmolꢀa, and 14ꢀ03ꢀ31039ꢀmol_a), the Minꢀ
istry of Education and Science of the Russian Federation
(Project No. 8445), and the Russian Academy of Sciences
(Programs of the Presidium of the Russian Academy of
Received May 21, 2013;
in revised form May 29, 2013