Journal of the American Chemical Society
Article
(10) Wenthold, P. G.; Squires, R. R. J. Phys. Chem. 1995, 99, 2002−
2005.
(11) Shan, S.-O.; Herschlag, D. Proc. Natl. Acad. Sci. U. S. A. 1996, 93,
(45) Hanoian, P.; Sigala, P. A.; Herschlag, D.; Hammes-Schiffer, S.
Biochemistry 2010, 49, 10339−10348.
(46) Pollack, R. M.; Thornburg, L. D.; Wu, Z. R.; Summers, M. F.
Arch. Biochem. Biophys. 1999, 370, 9−15.
14474−14479.
(12) The enhanced sensitivity in DMSO relative to water can also be
seen in a plot of the equilibrium constants for hydrogen bond
formation in DMSO against those for the same series of compounds in
water. Such a plot has a slope of 15 (see Figure 2 in Shan and
Herschlag11), in contrast to a slope of 1 expected if there were no
dependence on the solvent.
(47) Ha, N. C.; Choi, G.; Choi, K. Y.; Oh, B. H. Curr. Opin. Struct.
Biol. 2001, 11, 674−678.
(48) Feierberg, I.; Aqvist, J. Biochemistry 2002, 41, 15728−15735.
(49) Chakraborty, D. K.; Soudackov, A. V.; Hammes-Schiffer, S.
Biochemistry 2009, 48, 10608−10619.
(50) Ringold, H. J.; Malhotra, S. K. Tetrahedron Lett. 1962, 3, 669−
672.
(13) Gilson, M. K.; Rashin, A.; Fine, R.; Honig, B. J. Mol. Biol. 1985,
(51) Pollack, R. M.; Zeng, B.; Mack, J. P.; Eldin, S. J. Am. Chem. Soc.
184, 503−516.
1989, 111, 6419−6423.
(52) Schwans, J. P.; Kraut, D. A.; Herschlag, D. Proc. Natl. Acad. Sci.
U. S. A. 2009, 106, 14271−14275.
(14) Warshel, A. Nature 1987, 330, 15−16.
(15) Cleland, W. W. Biochemistry 1992, 31, 317−319.
(16) Gerlt, J. A.; Gassman, P. G. Biochemistry 1993, 32, 11943−
11952.
(17) Cleland, W. W.; Kreevoy, M. M. Science 1994, 264, 1887−1890.
(18) Gerlt, J. A.; Kreevoy, M. M.; Cleland, W. W.; Frey, P. A. Chem.
Biol. 1997, 4, 259−267.
(19) Cleland, W. W.; Frey, P. A.; Gerlt, J. A. J. Biol. Chem. 1998, 273,
25529−25532.
(20) Robillard, G.; Shulman, R. G. J. Mol. Biol. 1974, 86, 519−540.
(21) Loh, S. N.; Markley, J. L. Biochemistry 1994, 33, 1029−1036.
(22) Frey, P. A.; Whitt, S. A.; Tobin, J. B. Science 1994, 264, 1927−
1930.
(53) Kim, K.; Cole, P. A. J. Am. Chem. Soc. 1998, 120, 6851−6858.
(54) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94,
6190−6191.
(55) Schnolzer, M.; Alewood, P.; Jones, A.; Alewood, D.; Kent, S. B.
̈
Int. J. Pept. Protein Res. 1992, 40, 180−193.
(56) Schwans, J. P.; Sunden, F.; Gonzalez, A.; Tsai, Y.; Herschlag, D.
Biochemistry 2013, 52, 7840−7855.
(57) Gill, S. C.; von Hippel, P. H. Anal. Biochem. 1989, 182, 319−
326.
(58) Kraut, D. A.; Churchill, M. J.; Dawson, P. E.; Herschlag, D. ACS
(23) Tong, H.; Davis, L. Biochemistry 1995, 34, 3362−3367.
(24) Zhao, Q.; Abeygunawardana, C.; Talalay, P.; Mildvan, A. S. Proc.
Natl. Acad. Sci. U. S. A. 1996, 93, 8220−8224.
(25) Bowers, P. M.; Klevit, R. E. Nat. Struct. Biol. 1996, 3, 522−531.
(26) Hur, O.; Leja, C.; Dunn, M. F. Biochemistry 1996, 35, 7378−
7386.
Chem. Biol. 2009, 4, 269−273.
(59) Ruben, E. A.; Schwans, J. P.; Sonnett, M.; Natarajan, A.;
Gonzalez, A.; Tsai, Y.; Herschlag, D. Biochemistry 2013, 52, 1074−
1081.
(60) Schwans, J. P.; Sunden, F.; Gonzalez, A.; Tsai, Y.; Herschlag, D.
J. Am. Chem. Soc. 2011, 133, 20052−20055.
(27) Wang, Z.; Luecke, H.; Yao, N.; Quiocho, F. A. Nat. Struct. Biol.
1997, 4, 519−522.
(61) Schowen, K. B.; Schowen, R. L. Methods Enzymol. 1982, 87,
551−606.
(28) Petrounia, I. P.; Pollack, R. M. Biochemistry 1998, 37, 700−705.
(29) Kraut, D. A.; Sigala, P. A.; Pybus, B.; Liu, C. W.; Ringe, D.;
Petsko, G. A.; Herschlag, D. PLoS Biol. 2006, 4, 501−519.
(30) Feierberg, I.; Aqvist, A. Theor. Chem. Acc. 2002, 108, 71−84.
(31) Gao, J.; Ma, S.; Major, D. T.; Nam, K.; Pu, J.; Truhlar, D. G.
Chem. Rev. 2006, 106, 3188−3209.
(62) Pollack, R. M. Bioorg. Chem. 2004, 32, 341−353.
(63) Pollack, R. M.; Bantia, S.; Bounds, P. L.; Koffman, B. M.
Biochemistry 1986, 25, 1905−1911.
(64) Yun, Y. S.; Lee, T.-H.; Nam, G. H.; Jang, D. S.; Shin, S.; Oh, B.-
H.; Choi, K. Y. J. Biol. Chem. 2003, 278, 28229−28236.
(65) Wilde, T. C.; Blotny, G.; Pollack, R. M. J. Am. Chem. Soc. 2008,
130, 6577−6585.
(32) Warshel, A.; Sharma, P. K.; Kato, M.; Xiang, Y.; Liu, H.; Olsson,
M. H. M. Chem. Rev. 2006, 106, 3210−3235.
(33) Zhong, W.; Gallivan, J. P.; Zhang, Y.; Li, L.; Lester, H. A.;
Dougherty, D. A. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 12088−
12093.
(66) CRC Handbook of Chemistry and Physics, 94th ed.; CRC Press:
Boca Raton, FL, 2013−2014; pp 9−6, 9−49, 9−50.
(67) Sigala, P. A.; Kraut, D. A.; Caaveiro, J. M. M.; Pybus, B.; Ruben,
E. A.; Ringe, D.; Petsko, G. A.; Herschlag, D. J. Am. Chem. Soc. 2008,
130, 13696−13708.
(34) Seyedsayamdost, M.; Reece, S.; Nocera, D.; Stubbe, J. J. Am.
Chem. Soc. 2006, 128, 1569−1579.
(68) Choi, G.; Ha, N.-C.; Kim, S. W.; Kim, D.-H.; Park, S.; Oh, B.-H.;
Choi, K. Y. Biochemistry 2000, 39, 903−909.
(35) Messmore, J. M.; Fuchs, D. N.; Raines, R. T. J. Am. Chem. Soc.
1995, 117, 8057−8060.
(69) Thornburg, L. D.; Goldfeder, Y. R.; Wilde, T. C.; Pollack, R. M.
J. Am. Chem. Soc. 2001, 123, 9912−9913.
(36) Danielson, M. A.; Falke, J. J. Annu. Rev. Biophys. Biomol. Struct.
1996, 25, 163−195.
(70) Childs, W.; Boxer, S. G. Biochemistry 2010, 49, 2725−2731.
(71) Stratton, J. R.; Pelton, J. G.; Kirsch, J. F. Biochemistry 2001, 40,
10411−10416.
(37) Davis, L.; Chin, J. W. Nat. Rev. Mol. Cell Biol. 2012, 13, 168−
182.
(38) Thorson, J. S.; Chapman, E.; Schultz, P. G. J. Am. Chem. Soc.
(72) Usher, K. C.; Remington, S. J.; Martin, D. P.; Drueckhammer,
D. G. Biochemistry 1994, 33, 7753−7759.
1995, 117, 9361−9362.
(39) Brooks, B.; Phillips, R. S.; Benisek, W. F. Biochemistry 1998, 37,
9738−9742.
(73) Mitra, B.; Kallarakal, A. T.; Kozarich, J. W.; Gerlt, J. A.; Clifton,
J. R.; Petsko, G. A.; Kenyon, G. L. Biochemistry 1995, 34, 2777−2787.
(74) Kraut, D. A.; Carroll, K. S.; Herschlag, D. Annu. Rev. Biochem.
2003, 72, 517−571.
(40) Kim, S. W.; Cha, S.-S.; Cho, H.-S.; Kim, J.-S.; Ha, N.-C.; Cho,
M.-J.; Jou, S.; Kim, K. K.; Choi, K. Y.; Oh, B.-H. Biochemistry 1997, 36,
14030−14036.
(75) Abraham, M. H.; Grellier, P. L.; Prior, D. V.; Duce, P. P.; Morris,
J. J.; Taylor, P. J. J. Chem. Soc., Perkin Trans. 2 1989, 6, 699−711.
(76) We have varied the electrostatic properties of the hydrogen
bond donor, whereas in the catalyzed reaction the hydrogen bond
acceptor varies in its charge density. ‘Commutative’ behavior of
hydrogen bond energetics has been observed, i.e., equal sensitivity to
variation in the hydrogen bond acceptor or donor.6 This equivalence is
also predicted from simple hydrogen bond models.5−7
(77) Additional deleterious effects from the mutations to create this
aqueous cavity would render the 103 fold effect from the oxyanion hole
an overestimate, not an underestimate, of the total effect.
(41) Zhao, Q.; Abeygunawardana, C.; Gittis, A. G.; Mildvan, A. S.
Biochemistry 1997, 36, 14616−14626.
(42) Cho, H. S.; Ha, N. C.; Choi, G.; Kim, H. J.; Lee, D.; Oh, K. S.;
Kim, K. S.; Lee, W.; Choi, K. Y.; Oh, B. H. J. Biol. Chem. 1999, 274,
32863−32868.
(43) Ha, N.-C.; Kim, M.-S.; Lee, W.; Choi, K. Y.; Oh, B.-H. J. Biol.
Chem. 2000, 275, 41100−41106.
(44) Oh, K. S.; Cha, S.-S.; Kim, D.-H.; Cho, H.-S.; Ha, N.-C.; Choi,
G.; Lee, J. Y.; Tarakeshwar, P.; Son, H. S.; Choi, K. Y.; Oh, B.-H.; Kim,
K. S. Biochemistry 2000, 39, 13891−13896.
7653
dx.doi.org/10.1021/ja413174b | J. Am. Chem. Soc. 2014, 136, 7643−7654