ACS Catalysis
Page 6 of 9
5619. (d) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C. J.
Generous support by the DFG (Gottfried-Wilhelm-Leibniz award),
the CSC (Scholarship to C.T.) and the DAAD (fellowship to U.D.)
is gratefully acknowledged. We thank Dr. Christopher Golz
(Göttingen University) for the X-ray diffraction analysis.
Electrochemical Arylation Reaction. Chem. Rev. 2018, 118, 6706-
6765. (e) Tang, S.; Liu, Y.; Lei, A. Electrochemical Oxidative Cross-
coupling with Hydrogen Evolution: A Green and Sustainable Way for
Bond Formation. Chem 2018, 4, 27-45. (f) Sauermann, N.; Meyer, T.
H.; Qiu, Y.; Ackermann, L. Electrocatalytic C–H Activation. ACS
Catal. 2018, 8, 7086-7103. (g) Sauermann, N.; Meyer, T. H.;
Ackermann, L. Electrochemical Cobalt-Catalyzed C−H Activation.
Chem. Eur. J. 2018, 24, 16209-16217. (h) Mohle, S.; Zirbes, M.;
Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Modern
Electrochemical Aspects for the Synthesis of Value‐Added Organic
Products. Angew. Chem. Int. Ed. 2018, 57, 6018-6041. (i) Moeller, K.
D. Using Physical Organic Chemistry To Shape the Course of
Electrochemical Reactions. Chem. Rev. 2018, 118, 4817-4833. (j)
Kärkäs, M. D. Electrochemical Strategies for C–H Functionalization
and C–N Bond Formation. Chem. Soc. Rev. 2018, 47, 5786-5865. (k)
Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic
Electrochemical Methods Since 2000: On the Verge of a Renaissance.
Chem. Rev. 2017, 117, 13230-13319. (l) Yoshida, J.; Kataoka, K.;
Horcajada, R.; Nagaki, A. Modern Strategies in Electroorganic
Synthesis. Chem. Rev. 2008, 108, 2265-2299. (m) Jutand, A.
Contribution of Electrochemistry to Organometallic Catalysis. Chem.
Rev. 2008, 108, 2300-2347.
1
2
3
4
5
6
7
8
REFERENCES
(1)
Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath,
Y.; Teets, T. S.; Nocera, D. G., Solar Energy Supply and Storage for
the Legacy and Nonlegacy Worlds. Chem. Rev. 2010, 110, 6474-6502.
(2)
For recent reviews, see: (a) Dey, A.; Sinha, S. K.; Achar, T.
K.; Maiti, D. Accessing Remote meta- and para-C(sp2)−H Bonds with
Covalently Attached Directing Groups. Angew. Chem. Int. Ed. 2019,
58, 2-26. (b) Gandeepan, P.; Ackermann, L. Transient Directing
Groups for Transformative C–H Activation by Synergistic Metal
Catalysis. Chem 2018, 4, 199-222. (c) Park, Y.; Kim, Y.; Chang, S.
Transition Metal-Catalyzed C–H Amination: Scope, Mechanism, and
Applications. Chem. Rev. 2017, 117, 9247-9301. (d) Ma, W.;
Gandeepan, P.; Li, J.; Ackermann, L. Recent Advances in Positional-
selective Alkenylations: Removable Guidance for Twofold C–H
Activation. Org. Chem. Front. 2017, 4, 1435-1467. (e) He, J.; Wasa,
M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Palladium-Catalyzed
Transformations of Alkyl C–H Bonds. Chem. Rev. 2017, 117, 8754-
8786. (f) Dey, A.; Maity, S.; Maiti, D. Reaching the South: Metal-
catalyzed Transformation of the Aromatic para-Position. Chem.
Commun. 2016, 52, 12398-12414. (g) McCann, S. D.; Stahl, S. S.
Copper-Catalyzed Aerobic Oxidations of Organic Molecules:
Pathways for Two-Electron Oxidation with a Four-Electron Oxidant
and a One-Electron Redox-Active Catalyst. Acc. Chem. Res. 2015, 48,
1756-1766. (h) Daugulis, O.; Roane, J.; Tran, L. D. Bidentate,
Monoanionic Auxiliary-Directed Functionalization of Carbon–
Hydrogen Bonds. Acc. Chem. Res. 2015, 48, 1053-1064. (i) Wencel-
Delord, J.; Glorius, F. C–H Bond Activation Enables the Rapid
Construction and Late-stage Diversification of Functional Molecules.
Nat. Chem. 2013, 5, 369. (j) Rouquet, G.; Chatani, N. Catalytic
Functionalization of C(sp2)–H and C(sp3)–H Bonds by Using Bidentate
Directing Groups. Angew. Chem. Int. Ed. 2013, 52, 11726-11743. (k)
Daugulis, O.; Do, H.-Q.; Shabashov, D. Palladium- and Copper-
Catalyzed Arylation of Carbon−Hydrogen Bonds. Acc. Chem. Res.
2009, 42, 1074-1086. (l) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-
Q. Palladium(II)-Catalyzed C–H Activation/C–C Cross-Coupling
Reactions: Versatility and Practicality. Angew. Chem. Int. Ed. 2009, 48,
5094-5115. (m) Ackermann, L.; Vicente, R.; Kapdi, A. R. Transition-
Metal-Catalyzed Direct Arylation of (Hetero)Arenes by C–H Bond
Cleavage. Angew. Chem. Int. Ed. 2009, 48, 9792-9826.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6)
Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.;
Ackermann, L. 3d Transition Metals for C–H Activation. Chem. Rev.
2019, 119, 2192-2452.
(7)
(a) Yang, Q.-L.; Li, C.-Z.; Zhang, L.-W.; Li, Y.-Y.; Tong,
X.; Wu, X.-Y.; Mei, T.-S. Palladium-Catalyzed Electrochemical C–H
Alkylation of Arenes. Organometallics 2019, 38, 1208-1212. (b) Sau,
S. C.; Mei, R.; Struwe, J.; Ackermann, L. Cobaltaelectro-Catalyzed C–
H Activation with Carbon Monoxide or Isocyanides. ChemSusChem,
2019, 12, 3023-3027. (c) Qiu, Y.; Scheremetjew, A.; Ackermann, L.
Electro-Oxidative C–C Alkenylation by Rhodium(III) Catalysis. J. Am.
Chem. Soc. 2019, 141, 2731-2738. (d) Luo, M.-J.; Hu, M.; Song, R.-J.;
He, D.-L.; Li, J.-H. Ruthenium(II)-catalyzed Electrooxidative [4+2]
Annulation of Benzylic Alcohols with Internal Alkynes: Entry to
Isocoumarins. Chem. Commun. 2019, 55, 1124-1127. (e) Kong, W.-J.;
Finger, L. H.; de Oliveira, J. C. A.; Ackermann, L.
Rhodaelectrocatalysis for Annulative C–H Activation: Polycyclic
Aromatic Hydrocarbons by Versatile Double Electrocatalysis. Angew.
Chem. Int. Ed. 2019, 58, 6342-6346. (f) Zeng, L.; Li, H.; Tang, S.; Gao,
X.; Deng, Y.; Zhang, G.; Pao, C.-W.; Chen, J.-L.; Lee, J.-F.; Lei, A.
Cobalt-Catalyzed Electrochemical Oxidative C–H/N–H Carbonylation
with Hydrogen Evolution. ACS Catal. 2018, 8, 5448-5453. (g) Xu, F.;
Li, Y.-J.; Huang, C.; Xu, H.-C. Ruthenium-Catalyzed Electrochemical
Dehydrogenative Alkyne Annulation. ACS Catal. 2018, 8, 3820-3824.
(h) Tang, S.; Wang, D.; Liu, Y.; Zeng, L.; Lei, A. Cobalt-catalyzed
Electrooxidative C–H/N–H [4+2] Annulation with Ethylene or Ethyne.
Nat. Commun. 2018, 9, 798. (i) Qiu, Y.; Tian, C.; Massignan, L.;
Rogge, T.; Ackermann, L. Electrooxidative Ruthenium-Catalyzed
C−H/O−H Annulation by Weak O-Coordination. Angew. Chem. Int.
Ed. 2018, 57, 5818-5822. (j) Qiu, Y.; Stangier, M.; Meyer, T. H.;
Oliveira, J. C. A.; Ackermann, L. Iridium-Catalyzed Electrooxidative
C−H Activation by Chemoselective Redox-Catalyst Cooperation.
Angew. Chem. Int. Ed. 2018, 57, 14179-14183. (k) Qiu, Y.; Kong, W.-
J.; Struwe, J.; Sauermann, N.; Rogge, T.; Scheremetjew, A.;
Ackermann, L. Electrooxidative Rhodium-CatalyzedꢀC−H/C−H
Activation: Electricity as Oxidant for Cross-Dehydrogenative
Alkenylation. Angew. Chem. Int. Ed. 2018, 57, 5828-5832. (l) Meyer,
T. H.; Oliveira, J. C. A.; Sau, S. C.; Ang, N. W. J.; Ackermann, L.
Electrooxidative Allene Annulations by Mild Cobalt-Catalyzed C–H
Activation. ACS Catal. 2018, 8, 9140-9147. (m) Mei, R.; Koeller, J.;
Ackermann, L. Electrochemical Ruthenium-catalyzed Alkyne
Annulations by C–H/Het–H Activation of Aryl Carbamates or Ohenols
in Protic Media. Chem. Commun. 2018, 54, 12879-12882. (n) Ma, C.;
Zhao, C.-Q.; Li, Y.-Q.; Zhang, L.-P.; Xu, X.-T.; Zhang, K.; Mei, T.-S.
Palladium-catalyzed C–H Activation/C–C Cross-coupling Reactions
via Electrochemistry. Chem. Commun. 2017, 53, 12189-12192. (o)
Saito, F.; Aiso, H.; Kochi, T.; Kakiuchi, F. Palladium-Catalyzed
Regioselective Homocoupling of Arenes Using Anodic Oxidation:
Formal Electrolysis of Aromatic Carbon–Hydrogen Bonds.
(3)
(a) Wang, W.; Lorion, M. M.; Shah, J.; Kapdi, A. R.;
Ackermann, L. Late-Stage Peptide Diversification by Position-
Selective C−H Activation. Angew. Chem. Int. Ed. 2018, 57, 14700-
14717. (b) Noisier, A. F. M.; Brimble, M. A. C–H Functionalization in
the Synthesis of Amino Acids and Peptides. Chem. Rev. 2014, 114,
8775-8806.
(4)
(a) Pouliot, J.-R.; Grenier, F.; Blaskovits, J. T.; Beaupré, S.;
Leclerc, M. Direct (Hetero)arylation Polymerization: Simplicity for
Conjugated Polymer Synthesis. Chem. Rev. 2016, 116, 14225-14274.
(b) Schipper, D. J.; Fagnou, K. Direct Arylation as a Synthetic Tool for
the Synthesis of Thiophene-Based Organic Electronic Materials. Chem.
Mater. 2011, 23, 1594-1600. (c) Seki, M. A New Catalytic System for
Ru-Catalyzed C–H Arylation Reactions and Its Application in the
Practical Syntheses of Pharmaceutical Agents. Org. Process Res. Dev.
2016, 20, 867-877. (d) Ackermann, L. Robust Ruthenium(II)-
Catalyzed C–H Arylations: Carboxylate Assistance for the Efficient
Synthesis of Angiotensin-II-Receptor Blockers. Org. Process Res. Dev.
2015, 19, 260-269.
(5)
For recent reviews, see: (a) Meyer, T. H.; Finger, L. H.;
Gandeepan, P.; Ackermann, L. Resource Economy by
Metallaelectrocatalysis: Merging Electrochemistry and C–H
Activation. Trends Chem. 2019, 1, 63-76. (b) Yan, M.; Kawamata, Y.;
Baran, P. S. Synthetic Organic Electrochemistry: Calling All
Engineers. Angew. Chem. Int. Ed. 2018, 57, 4149-4155. (c) Wiebe, A.;
Gieshoff, T.; Mohle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R.
Electrifying Organic Synthesis. Angew. Chem. Int. Ed. 2018, 57, 5594-
ACS Paragon Plus Environment