LETTER
Nickel-Promoted Carboxylation of Allenamides
739
O
1) HCl
2) CH2N2
O
O
O
C
O
R2 = H
H
NiLn
NiLn
H
H
N
N
OMe
OMe
•
N
R2
•
N
H
6
N
10
11
O
H
1) HCl
2) CH2N2
O
4
LnNi
Ni(0)Ln
re face
si face
O
+
CO2
N
R2
(E)-8
O
R2
13
R2 = Me
or
EWG
C
O
major product
O
H
R2
N =
N
NiLn
re face
N
R
R1
1) HCl
2) CH2N2
•
O
LnNi
N
H
O
O
N
OMe
C
NiLn
si face
O
R2
(Z)-8
R2
12
14
minor product
Scheme 7 Possible reaction course including origin of regio- and stereoselectivity
used, the less-hindered distal double bond of the allene
part and CO2 would coordinate to the nickel center to give
10 first, from which oxidative cycloaddition would pro-
ceed to afford nickelalactone 11. Hydrolysis of 11 fol-
lowed by methylation would afford 6. On the other hand,
in the reaction of allenamides having an alkyl group (R2 =
Me or CMe2R), the less-hindered nitrogen-substituted
double bond of 4 would coordinate to the nickel center to
give 12. In this step, two types of coordinated complex
could be formed. That is, if oxidative cycloaddition of the
re face of the nitrogen-substituted double bond of allen-
amide and CO2 proceeded, nickelalactone 13 could be
formed. On the other hand, oxidative cycloaddition of the
si face of the double bond and CO2 would give nickelalac-
tone 14. Obviously, the formation of 14 from 12 seems to
be less favorable than the formation of 13 because of ste-
ric repulsion between the alkyl group in the allenamide
and CO2. Thus, nickelalactone 13 would be formed pref-
erably as compared with 14, resulting in (E)-8 being ob-
tained as a major product after hydrolysis followed by
methylation.
Supporting Information for this article is available online at
r
t
iornat
References and Notes
(1) For reviews on transition-metal-promoted carboxylation,
see: (a) Braunstein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988,
88, 747. (b) Gibson, D. H. Chem. Rev. 1996, 96, 2063.
(c) Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999, 181, 27.
(d) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007,
107, 2365. (e) Hou, Z.; Ohishi, T. In Comprehensive
Organometallic Chemistry III; Vol. 10; Crabtree, R. H.;
Mingos, D. M. P.; Ojima, I., Eds.; Elsevier: Oxford, 2007,
537–555. (f) Correa, A.; Martín, R. Angew. Chem. Int. Ed.
2009, 48, 6201. (g) Riduan, S. N.; Zhang, Y. Dalton Trans.
2010, 39, 3347. (h) Mikkelsen, M.; Jørgensen, M.; Krebs, F.
C. Energy Environ. Sci. 2010, 3, 43. (i) Huang, K.; Sun,
C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435. (j) Cokoja,
M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F.
E. Angew. Chem. Int. Ed. 2011, 50, 8510. (k) Martín, R.;
Kleij, A. W. ChemSusChem 2011, 4, 1259. (l) Tsuji, Y.;
Fujihara, T. Chem. Commun. 2012, 48, 9956. (m) Omae, I.
Coord. Chem. Rev. 2012, 256, 1384.
(2) For the most recent selected examples of transition-metal-
promoted carboxylations, see: (a) Tran-Vu, H.; Daugulis, O.
ACS Catal. 2013, 3, 2417. (b) Takimoto, M.; Hou, Z. Chem.
Eur. J. 2013, 19, 11439. (c) Yu, B.; Diao, Z.-F.; Guo, C.-X.;
Zhong, C.-L.; He, L.-N.; Zhao, Y.-N.; Song, Q.-W.; Liu,
A.-H.; Wang, J.-Q. Green Chem. 2013, 15, 2401. (d) León,
T.; Correa, A.; Martin, R. J. Am. Chem. Soc. 2013, 135,
1221. (e) Sasano, K.; Takaya, J.; Iwasawa, N. J. Am. Chem.
Soc. 2013, 135, 10954. (f) Feng, X.; Sun, A.; Zhang, S.; Yu,
X.; Bao, M. Org. Lett. 2013, 15, 108. (g) Duong, H. A.;
Huleatt, P. B.; Tan, Q.-W.; Shuying, E. L. Org. Lett. 2013,
15, 4034. (h) Hase, S.; Kayaki, Y.; Ikariya, T.
In summary, we have demonstrated nickel-promoted car-
boxylation of allenamide with an atmospheric pressure of
carbon dioxide. The reaction proceeds via a nickelalac-
tone intermediate from allenamide and carbon dioxide to
give the corresponding β-amino acid derivatives. It was
also found that the regioselectivity at the oxidative addi-
tion stage was strongly affected by substituents on the al-
lene part. Further studies including development of the
carboxylation to a catalytic reaction are in progress.
Organometallics 2013, 32, 5285; see also ref. 1l.
(3) For a review on nickel-mediated or -catalyzed carboxylation
via nickelalactone, see: Takimoto, M.; Mori, M. In Modern
Organonickel Chemistry; Tamaru, Y., Ed.; Wiley-VCH:
Weinheim, 2005, 205–223.
(4) (a) Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.;
Yamamoto, Y. J. Org. Chem. 1999, 64, 3975. (b) Takimoto,
M.; Shimizu, K.; Mori, M. Org. Lett. 2001, 3, 3345.
(c) Shimizu, K.; Takimoto, M.; Mori, M. Org. Lett. 2003, 5,
2323. (d) Aoki, M.; Kaneko, M.; Izumi, S.; Ukai, K.;
Iwasawa, N. Chem. Commun. 2004, 2568. (e) Shimizu, K.;
Acknowledgment
This work was partly supported by a Grant-in-Aid for Young Scien-
tists (B) (No. 24790002) and a Grant-in-Aid for Scientific Research
(B) (No. 23390001) from JSPS and by a Grant-in-Aid for Scientific
Research on Innovative Areas ‘Molecular Activation Directed to-
ward Straightforward Synthesis’ (Nos. 23105501 and 25105701)
from MEXT, Japan. N.S. acknowledges Takeda Science Foundati-
on for financial support.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 736–740