J. Robertson et al. / Tetrahedron Letters 47 (2006) 6285–6287
6287
609602. Copies of the data can be obtained, free of
charge, on application to CCDC, 12 Union Road,
Cambridge CB2 1EZ [fax: +44 (0)1223 336033 or e-mail:
deposit@ccdc.cam.ac.uk].
rearranged and dimeric products (6 and 7, respectively).
Although we have not yet studied other 2-aroyl-
dihydrofurans we expect that a similar reactivity pattern
will be observed. This reactivity does not extend to the
dihydropyran analogue 10 nor to the simple 2-alka-
noyldihydrofurans, such as 2-formyl- and 2-acetyl-
dihydrofuran, which show merely the expected
instability towards acidic conditions.
10. Simple dihydrofurans bearing 2-aroyl substituents are
relatively poorly represented in the literature; Satoh, T.;
Itaya, T.; Okuro, K.; Miura, M.; Nomura, M. J. Org.
Chem. 1995, 60, 7267–7271, see also Ref. 13.
11. Withey, J. M. Part II Thesis, University of Oxford, 2000.
12. Paquette, L. A.; Schulze, M. M.; Bolin, D. G. J. Org.
Chem. 1994, 59, 2043–2051.
13. Shimano, M.; Meyers, A. I. Tetrahedron Lett. 1994, 35,
7727–7730.
14. The reaction may proceed by initial SET to give O2 and
Acknowledgements
Åꢀ
We thank the EPSRC and Pfizer Global Research and
Development for a studentship (for A.J.T.), and Dr.
A. R. Cowley for assistance with the X-ray analysis of
tricycle 7.
12; coupling and dioxetane formation may ensue with this
intermediate (13) potentially acting as an oxidising agent
for more of the enol ether (5). In this scenario, the HOMO
energy will be important and this is expected to be
responsive to the nature of the ketone substituent (aryl or
alkyl).
References and notes
O O
.
–
1. This compound was prepared by stannylation of
dihydrofuryllithium. (a) Boeckman, R. K., Jr.; Bruza, K.
J. Tetrahedron 1981, 37, 3997–4006; (b) Soderquist, J. A.;
Hsu, G. J.-H. Organometallics 1982, 1, 830–833.
2. (a) Burger, K.; Rudolph, M. Chem. Zeitung 1990, 114,
249–251; (b) Burger, K.; Gold, M.; Neuhauser, H.;
Rudolph, M. Chem. Zeitung 1991, 115, 77–82.
O2
O
O
O
O
Ph
Ph
12
O
O
5
O
O
3. (a) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100,
2 ×
O
O
´
3636–3638; (b) Blanchot, V.; Fetizon, M.; Hanna, I.
O
Ph
Synthesis 1990, 755–756; cf. (c) Golubev, A. S.; Sewald,
N.; Burger, K. Tetrahedron 1996, 52, 14757–14776.
4. Berge, J. M.; Roberts, S. M. Synthesis 1979, 471–472.
5. Renaud, P.; Lacoˆte, E.; Quaranta, L. Tetrahedron Lett.
1998, 39, 2123–2126.
6. Leibner, J. E.; Jacobus, J. J. Org. Chem. 1979, 44, 449–
450, see also Ref. 3a.
7. Harrowven, D. C.; Guy, I. L. Chem. Commun. 2004, 1968–
1969.
Ph
13
8
Alkene oxidation by dioxetanes: (a) Adam, W.; Andler, S.;
Heil, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1365–
1366; (b) Adam, W.; Blancafort, L. J. Org. Chem. 1996,
61, 8432–8438; For a recent report of unexpected epox-
idation by molecular oxygen, and a presentation of the
mechanism in terms of a diradical pathway, see Eade, S. J.;
Adlington, R. M.; Cowley, A. R.; Walter, M. W.;
Baldwin, J. E. Org. Lett. 2005, 7, 3705–3707.
8. See, for example, Jedlinski, Z.; Kowalczuk, M.; Kurcok,
P.; Grzegorzek, M.; Ermel, J. J. Org. Chem. 1987, 52,
4601–4602.
9. Crystal data for 7: C22H20O5, M = 364.40, colourless
15. For early precedent for this type of process, under Lewis
acidic conditions, see, for example, (a) Allen, C. F. H.;
Gates, J. W., Jr. J. Am. Chem. Soc. 1943, 65, 1230–1235;
(b) House, H. O. J. Am. Chem. Soc. 1954, 76, 1235–1237.
16. Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1972, 11, 129–
130, and 130–131.
fragment, monoclinic, a = 10.6044(2), b = 11.9077(2),
3
˚
˚
c = 14.7870 (3) A, V = 1807.82(6) A , T = 150 K, space
group P21/n, Z = 4, l(Mo Ka) = 0.095 mmꢀ1, 19,769
reflections measured, 4330 unique (Rint = 0.043), final
wR = 0.0377. Crystallographic data for this structure have
been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication number CCDC
17. Prepared using Meyers’ method [Ref. 13] with N,N-
dimethylacetamide (59% yield).