5
give rise to an achiral ether following this SN1 reaction
mechanism.
catalytic 4-nitrobenzenesulfonic acid assisted nucleophilic
substitution of substituted propargyl alcohols with aliphatic
alcohols, aliphatic amines and heterocycles. Most importantly,
this method does not employ any costly or corrosive metal
catalysts and toxic solvents, and also avoids the traditional
column chromatographic purification. The results confirm that
the product yields are exceptional in all stated C-C, C-N and C-O
bond forming reactions. Furthermore, this synthetic route makes
it possible for widespread applications in synthetic chemistry,
particularly in the formations of C-C, C-N and C-O bonds, as
these linkages are constituent of numerous bioactive molecules,
pharmaceutical targets and materials.
The scalability of the substitution process was tested on gram
scale in the cases of six moieties, 2d, 2e, 2o, 2u, 2x and 2y as
presented in Table 3.
Table 3: Scalability of this process was tested in six compounds
Entry
Substrate /
Product /
Yield (%)
Quantity (g)
Quantity (g)
1
2
3
4
5
6
1a / 1.2
1a / 1.5
1j / 1.1
1a / 2.0
1a / 1.0
1a / 1.5
2d / 1.26
2e / 1.51
2o / 1.03
2u / 2.19
2x / 1.43
2y / 2.47
88
85
89
92
90
89
Supplementary data
The general synthetic procedure and the details of NMR and
Mass spectra, associated with this article, are given in the
supplementary data, available in the online version.
References
*Reaction condition: Substrate (1 mol), Nu-H (1.2 mol) and p-NBSA (5 mol
%) in ACN (10 volume) at room temperature (rt).
Click here to remove instruction text...
In conclusion, we have found a metal-free economically
viable and scalable new synthetic protocol for making a variety
of compounds containing linkages C-C, C-N and C-O by
Lett. 2006, 8, 4791-4794. (c) Ma, S.; Yu, S.; Peng, Z. J. Org.
Chem. 2006, 71, 9865-9868.
16. (a) Srihari, P.; Bhunia, D. C.; Sreedhar, P.; Mandal, S. S.; Reddy, J.
S. S.; Yadav, J. S. Tetrahedron Lett. 2007, 48, 8120-8124. (b)
Kennedy-Smith, J. J.; Young, L. A.; Toste, F. D. Org. Lett. 2004,
6, 1325-1327.
1. F. Bohlmann, H. Burkhardt, C. Zdero, Naturally Occurring
Acetylenes, Academic Press, New York, 1973.
2. Kawai, H.; Kitayama, T.; Tokunaga, E.; Shibata.N. Eur. J. Org.
Chem. 2011, 5959-5961.
17. (a) Georgy, M.; Boucard, V.; Campagne, J. M. J. Am. Chem. Soc.
2005, 127, 14180-14181. (b) Engel, D. A.; Dudley, G. B. Org.
Lett. 2006, 8, 4027-4029. (c) Sun, C. X.; Lin, X. C.; Weinreb, S.
M. J. Org. Chem. 2006, 71, 3159-3166.
3. (a) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124,
1172-1173. (b) Jensen, K. B.; Thorhange, J.; Hazel, R. G.;
Jorgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 160-163. (c)
Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int.
Ed. 2004, 43, 550-556.
4. (a) Mahrwald, R.; Quint, S. Tetrahedron 2000, 56, 7463-7468. (b)
Bartels, A.; Mahrwald, R.; Quint, S. Tetrahedron Lett. 1999, 40,
5989-5990. (c) Bhatt, R. K.; Shin, D.-S.; Falck, J. R. Tetrahedron
Lett. 1992, 33, 4885-4888.
5. (a) Gates, K. S.; Silverman, R. B. J. Am. Chem. Soc.1990, 112, 9364.
(b) Rosenberg, S. H.; Kleinert, H. D.; Stein, H. H.; Martin, D. L.;
Chekal, M. A.; Cohen, J.; Egan, D. A.; Tricarico, K. A.; Baker, W.
R. J. Med. Chem. 1991, 34, 469.
6. Sugawara, Y.;Yamada, W.; Yoshida, S.; Ikeno, T.; Yamada, T. J.
Am. Chem. Soc.2007, 129, 12902-12903.
18. Procedure for nucleophilic substitution of propargyl alcohols with
nucleophiles
A solution of substituted propargyl alcohol (1 mmol) and
nucleophile (1.20 mmol) in acetonitrile (5 mL) was taken in round
bottom flask (RBF) under nitrogen atmosphere and then p-NBSA
(5 mol %) added at room temperature (rt). The reaction mixture
was stirred at the same temperature and the progress of the
reaction was monitored by thin layer chromatography (TLC). The
reaction mixture was quenched by 10% of aq. NaHCO3 solution,
extracted with ethyl acetate, further the combined ethyl acetate
layer was washed using brine solution. The ethyl acetate layer was
dried over Na2SO4, filtered and then filtrate was treated with silica
gel (2grams) for 30 minutes. Finally, the silica gel was filtered off
and the filtrate was concentrated under vacuum to obtain the
desired product.
7. Du, X.; Dai, Y.; He, R.; Lu, S.; Bao, M. Synth.Commun, 2009, 39,
3940-3949.
8. (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Trost, B. M.
Angew. Chem. 1995, 107, 285. (c) Furuta, K.; Ishiguro, M.;
Haruta, R.; Ikeda, N.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1984,
57, 2768-2776.
19. (a) Sherry, B. D.; Radosevich, A. T.; Toste, F. D. J. Am. Chem.
Soc.2003, 125, 15760-15761. (b) Lee, B. S.; Mahajan, S.; Janda,
K. D. Synlett.2005, 1325-1327.
20. (a) Trost, B. M.; Chung, C. K. J. Am. Chem. Soc. 2006, 128, 10358-
10359. (b) Wang, D.; Ye, X.; Shi, X. Org. Lett. 2010, 12, 2088-
2091. (c) Jarowski, P. D.; Wu, Y. L.; Schweizer, W. B.; Diederich,
F. Org. Lett. 2008, 10, 3347-3350.
9. Zhan, Z.-P.; Yang, W.-Z.; Yang, R.-F.; Yu, J.-L.; Li, J.-P.; Liu, H.-J.
Chem. Commun. 2006, 3352-3354.
10. (a) Hayashi, M.; Inbushi, A.; Mukaiyama, T. Bull. Soc. Chem.
Jpn.1988, 61, 4037-4042. (b) Mantione, R. Bull. Soc. Chim., Fr.
1969, 4514-4552. (c) Shi, M.; Shouki, K.; Okamoto, Y.;
Takamuku, S. J. Chem. Soc., Perkin Trans. 1990, 1, 2443-2450.
(d) Burgess, K.; Jennings, L. D. J. Am. Chem. Soc. 1991, 6129-
6139.
21. Zhan, Z.-P.; Yu, J.-L.; Liu, H.-J.; Cui, Y.-Y.; Yang, R.-F.; Yang,
W.-Z.; Li, J.-P. J. Org. Chem. 2006, 71, 8298-8301.
11. Yang, F.; Zhao, G.; Ding, Y. Tetrahedron Lett.2001, 42, 2839-2841.
12.Yadav, J. S.; Subba Reddy, B. V.; RaghavendraRao, K. V.;
Narayana Kumar, G. G. K. S. Tetrahedron Lett. 2007, 48, 5573-
5576.
13. Jana, U.; Maiti, S.; Biswas, S. Tetrahedron Lett.2007, 48, 7160-
7163.
14. (a) Gohain, M.; Marais, C.; Bezuidenhoudt, B. C. B. Tetrahedron
Lett. 2012, 53, 1048-1050. (b) Taobald, B. J. Tetrahedron2002,
58, 4133-4170. (c) Emer, E.; Sinisi, R.; Capdevila, M. G.;
Petruzziello, D.; De Vincentiis, F.; Cozzi, P. G. Eur. J. Org.
Chem. 2011, 647-666.
15. (a) Yan, W.; Wang, Q.; Chen, Y.; Petersen, J. L.; Shi, X. Org.
Lett.2010, 12, 3308-3311. (b) Westermaier, M.; Mayr, H. Org.