Organic Letters
Letter
reaction in synthetic and medicinal chemistry might be quite
significant.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and spectral data for all new
compounds including crystallographic data (CIF). This materi-
AUTHOR INFORMATION
■
Corresponding Author
Figure 2. Molecular structure of spiro compound 2g.
Notes
The authors declare no competing financial interest.
cyclopentyl ring, while connecting to the open acetyl chain in
the molecule.
An adjusted reaction mechanism for the formation of
spiro[cyclopent[2]ene-1,3′-indolines] is proposed in Scheme
2 on the basis of reported reactions.17 At first, the addition of
ACKNOWLEDGMENTS
■
This work was financially supported by the National Natural
Science Foundation of China (Grant No. 21172189) and the
Priority Academic Program Development of Jiangsu Higher
Education Institutions. We also thank the Analysis and Test
Center of Yangzhou University for providing necessary
instruments for analysis.
Scheme 2. Formation Mechanism of Spiro[cyclopent[2]ene-
1,3′-indolines]
REFERENCES
■
(1) (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
(b) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035.
(c) Marinetti, A.; Voituriez, A. Synlett 2010, 174. (d) Wei, Y.; Shi, M.
Acc. Chem. Res. 2010, 43, 1005.
(2) (a) Ye, L. W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140.
(b) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102. (c) Xu,
S.; He, Z. Sci. Sinica Chim. 2010, 40, 856. (d) Han, Y.; Sun, J.; Sun, Y.;
Gao, H.; Yan, C. G. Chin. J. Org. Chem. 2012, 32, 1577.
(3) (a) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.;
Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899. (b) Nair, V.;
Menon, R. S.; Sreekanth, A.; Abhilash, N.; Biju, A. T. Acc. Chem. Res.
2006, 39, 520. (c) Kielland, N.; Lavilla, R. Top. Heterocycl. Chem. 2010,
25, 127. (d) Shaabani, A.; Rezayan, A. H.; Sarvary, A. Mol. Diversity
2011, 15, 41.
(4) (a) Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J.
Am. Chem. Soc. 1997, 119, 3836. (b) Du, Y.; Lu, X. J. Org. Chem. 2003,
68, 6463. (c) Zhu, X. F.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125,
4716. (d) Tran, Y. S.; Kwon, O. Org. Lett. 2005, 7, 4289. (e) Jung, C.
K.; Wang, J. C.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 4118.
(5) (a) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906. (b) Tran, Y.
S.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 12632. (c) Zhu, X. F.;
Henry, C. E.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 6722.
(d) Mercier, E.; Fonovic, B.; Henry, C.; Kwon, O.; Dudding, T.
Tetrahedron Lett. 2007, 48, 3617. (e) Xu, S.; Zhou, L.; Ma, R.; Song,
H.; He, Z. Chem.Eur. J. 2009, 15, 8698. (f) Wang, T.; Ye, S. Org.
Lett. 2010, 12, 4168.
triphenylphosphine to hex-2-en-4-ynedioate gives intermediate
E. Second, the addition of a 1,3-dipolar zwitterionate (E) to
isatinylidene malononitrile produces adduct F. Third, the
intramolecular Michael addition of the carbanion to the 1,3-
diene bearing a stronger electron-withdrawing triphenylphos-
phanyl cation in adduct F affords a cyclized intermediate (G),
which in turn transfers to a phosphorus ylide intermediate (H)
by allylic arrangement of the carbanion. Finally, the phosphorus
ylide transfers to the triphenylphosphanylidene spiro[cyclo-
pent[2]ene-1,3′-indoline] 2.
In summary, we have successfully developed a one-pot three-
component reaction of triphenylphosphine, electron-deficient
alkynes, and isatylidene malononitrile (ethyl isatylidene
cyanoacetate). This reaction provided a convenient protocol
for the synthesis of the functionalized triphenylphosphanyli-
dene spiro[cyclopentane-1,3′-indoline] and spiro[cyclopent[2]-
ene-1,3′-indoline] in satisfactory yields. Furthermore, the
formation mechanisms for the two kinds of spirooindoles are
rationally proposed. The short reaction time, readily variable
substrates, ease in handling, and high yields render this
multicomponent reaction applicable to the synthesis of
structurally diverse spirooxindoles. The potential uses of this
(6) (a) Wilson, J. E.; Fu, G. C. Angew. Chem., Int. Ed. 2006, 45, 1426.
(b) Wallace, D. J.; Sidda, R. L.; Reamer, R. A. J. Org. Chem. 2007, 72,
1051. (c) Fang, Y. Q.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130,
5660. (d) Xiao, H.; Chai, Z.; Zheng, C. W.; Yang, Y. Q.; Liu, W.;
Zhang, J. K.; Zhao, G. Angew. Chem., Int. Ed. 2010, 49, 4467.
(e) Voituriez, A.; Pinto, N.; Neel, M.; Retailleau, P.; Marinetti, A.
Chem.Eur. J. 2010, 16, 12541.
(7) (a) Du, Y.; Lu, X.; Zhang, C. Angew. Chem., Int. Ed. 2003, 42,
1035. (b) Du, Y.; Feng, J.; Lu, X. Org. Lett. 2005, 7, 1987. (c) Feng, J.;
Lu, X.; Kong, A.; Han, X. Tetrahedron 2007, 63, 6035. (d) Zheng, S.;
Lu, X. Org. Lett. 2008, 10, 4481. (e) Ye, L. W.; Sun, X. L.; Wang, Q.
G.; Tang, Y. Angew. Chem., Int. Ed. 2007, 46, 5951. (f) Zheng, S.; Lu,
X. Org. Lett. 2009, 11, 3978.
2656
dx.doi.org/10.1021/ol5008394 | Org. Lett. 2014, 16, 2654−2657