Organic Letters
Letter
Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236. (j) Girard, S. A.;
Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.
(2) (a) Kitahara, M.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. J.
Am. Chem. Soc. 2011, 133, 2160. (b) Nishino, M.; Hirano, K.; Satoh,
T.; Miura, M. Angew. Chem., Int. Ed. 2012, 51, 6993. (c) Mao, Z.;
Wang, Z.; Xu, Z.; Huang, F.; Yu, Z.; Wang, R. Org. Lett. 2012, 14,
3854. (d) Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem.,
Int. Ed. 2013, 52, 4457.
tion of IM1 affords IM2, followed by an acetate-assisted
intramolecular C−H cupration of the phenyl ring to furnish the
key intermediate IM3. The following reductive elimination and
intramolecular annulation form 3a.15 The above assumptions
also demonstrate why 3 equiv of Cu(OAc)2 must be required
to achieve a good conversion.
Finally, we attempted the removal of the quinolinyl group
from the products. All attempts failed to give the deprotected
products. Subsequently, we installed a methoxyl group on the
C5 position of quinoline ring and tried to remove the quinoline
moiety via the oxidation of ceric ammonium nitrate (CAN) in
CH3CN/H2O solution.16 Unfortunately, the deprotected
product was still not detected. In comparison to N-arylated
aliphatic lactam, it seemed to be more difficult to remove the
N-aryl group from benzolactam.
(3) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. J. Am.
Chem. Soc. 2012, 134, 5766.
(4) (a) Ackermann, L. Acc. Chem. Res. 2014, 47, 281. (b) Chinchilla,
R.; Naj
(5) (a) Chinchilla, R.; Naj
(b) Chinchilla, R.; Najera, C. Chem. Soc. Rev. 2011, 40, 5084.
́
era, C. Chem. Rev. 2014, 114, 1783.
́
era, C. Chem. Rev. 2007, 107, 874.
́
(6) (a) Dudnik, A. S.; Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49,
2096 and references cited therein. (b) Kim, S. H.; Chang, S. Org. Lett.
2010, 12, 1868. (c) Ano, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2012,
In summary, by taking advantage of the bidentate-chelation
assistance of an 8-aminoquinoline residue, we have disclosed
for the first time the copper-mediated tandem oxidative
C(sp2)−H/C(sp)−H cross-coupling and intramolecular annu-
lation of unactivated arenes with terminal alkynes, delivering a
wide array of functionalized 3-methyleneisoindolin-1-ones. In
the oxidative cross-coupling process, Cu(OAc)2 serves as both
the promoter and the terminal oxidant. The transformation has
demonstrated for the first time that Cu(OAc)2 can be
renewable after undergoing an oxidative reaction. The present
protocol exhibits the following features: (1) a simple, easily
available, and inexpensive reaction system; (2) no extra ligand,
base, and additive is required; (3) wide substrate scope; (4)
excellent functional group tolerance; and (5) exclusive chemo-,
regio-, and stereoselectivities. Our findings offer an alternative
method for the efficient synthesis of a 3-methyleneisoindolin-1-
one scaffold and shed more light on nonprecious metal-
mediated oxidative cross-coupling reactions.
́
14, 354. (d) Ruano, J. L. G.; Aleman, J.; Marzo, L.; Alvarado, C.;
́
Tortosa, M.; Dιaz-Tendero, S.; Fraile, A. Angew. Chem., Int. Ed. 2012,
51, 2712. (e) Ano, Y.; Tobisu, M.; Chatani, N. Synlett 2012, 23, 2763.
(7) (a) Kitahara, M.; Hirano, K.; Tsurugi, H.; Satoh, T.; Miura, M.
Chem.Eur. J. 2010, 16, 1772. (b) Matsuyama, N.; Kitahara, M.;
Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2358. (c) Yang,
L.; Zhao, L.; Li, C.-J. Chem. Commun. 2010, 46, 4184. (d) Kim, S. H.;
Yoon, J.; Chang, S. Org. Lett. 2011, 13, 1474. (e) Jie, X.; Shang, Y.; Hu,
P.; Su, W. Angew. Chem., Int. Ed. 2013, 52, 3630.
(8) (a) Haro, T. d.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 1512.
(b) Wei, Y.; Zhao, H.; Kan, J.; Su, W.; Hong, M. J. Am. Chem. Soc.
2010, 132, 2522. (c) Kim, S. H.; Park, S. H.; Chang, S. Tetrahedron
2012, 68, 5162.
(9) (a) Corbet, M.; Campo, F. D. Angew. Chem., Int. Ed. 2013, 52,
9896. (b) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52,
11726.
(10) (a) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012,
134, 18237. (b) Aihara, Y.; Chatani, N. Chem. Sci. 2013, 4, 664.
(c) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2013, 135, 5308.
(d) Rouquet, G.; Chatani, N. Chem. Sci. 2013, 4, 2201. (e) Tran, L. D.;
Roane, J.; Daugulis, O. Angew. Chem., Int. Ed. 2013, 52, 6043.
(f) Truong, T.; Klimovica, K.; Daugulis, O. J. Am. Chem. Soc. 2013,
135, 9342.
(11) (a) Kato, Y.; Ebiike, H.; Achiwa, K.; Ashizawa, N.; Kurihara, T.;
Kobayashi, F. Chem. Pharm. Bull. 1990, 38, 2060. (b) Lamblin, M.;
Couture, A.; Deniau, E.; Grandclaudon, P. Org. Bioorg. Chem. 2007, 5,
1466.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, characterization data, and copies of
NMR spectra. This material is available free of charge via the
(12) For detailed 2D NMR spectra of 3b, 3c, and 3k, see Supporting
Information.
(13) The H NMR chemical shifts of NH in 7 and 8 are 11.22 and
AUTHOR INFORMATION
Corresponding Author
■
1
9.20 ppm, respectively (CDCl3, 25 °C).
Notes
(14) At this stage, we cannot completely exclude the following
possible pathway to intermediate IM1: cupration of 2a with Cu(II) to
generate 12 and subsequent ligand exchange with 1a to form IM1,
although attempts to capture intermediate 12 failed. For a similar
mechanism proposed by Miura et al., see refs 2b and 2d.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by grants from the National Basic
Research Program of China (973 Program, 2011CB808601)
and the National NSF of China (Nos. 21025205, 21272160,
and 21321061).
(15) After the reductive elimination, the triple bond in situ
coordinates with Cu(I) to form IM4. The N− anion of benzamide
then attacks the alkyne moeity from the opposite side of copper(I),
followed by the protonation to deliver the specific Z-type product 3a.
However, at this moment, it is unclear why this reaction shows
predominant preference for the formation of the five-membered ring
over the six-membered ring.
REFERENCES
■
(1) For recent reviews and highlights, see: (a) Yeung, C. S.; Dong, V.
M. Chem. Rev. 2011, 111, 1215. (b) Liu, C.; Zhang, H.; Shi, W.; Lei, A.
Chem. Rev. 2011, 111, 1780. (c) Cho, S. H.; Kim, J. Y.; Kwak, J.;
Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (d) Bugaut, X.; Glorius, F.
Angew. Chem., Int. Ed. 2011, 50, 7479. (e) Han, W.; Ofial, A. R. Synlett
2011, 14, 1951. (f) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41,
3651. (g) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588.
(h) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed.
2012, 51, 8960. (i) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.;
(16) He, G.; Zhang, S.-Y.; Nack, W. A.; Li, Q.; Chen, G. Angew.
Chem., Int. Ed. 2013, 52, 11124.
D
dx.doi.org/10.1021/ol501023n | Org. Lett. XXXX, XXX, XXX−XXX