Organic Letters
Letter
other protocols for preparing β-azacarbonyl compounds, such as
the β-aminocarbonyls that result from Mannich reactions.19
Moreover, β-nitrocarbonyls are excellent precursors for β-
amino acids and their derivatives.23 For example, Zn/AcOH
provides a high-yielding, mild reagent for the selective reduction
of the nitro group to the corresponding amine (Scheme 5, top).
Alternatively, Pd/C-catalyzed hydrogenolysis of benzyl ester
derivatives leads cleanly to the unprotected β-amino acids in very
high yield (Scheme 5, bottom).
REFERENCES
■
(1) Seebach, D.; Colvin, E. W.; Lehr, F.; Weller, T. Chimia 1979, 33, 1.
(2) Ono, N. The Nitro Group In Organic Synthesis; John Wiley & Sons:
New York, 2001.
(3) (a) Aleksandrowicz, P.; Piotrowska, H.; Sas, W. Tetrahedron 1982,
38, 1321. (b) Maki, K.; Kanai, M.; Shibasaki, M. Tetrahedron 2007, 63,
4250. (c) Trost, B. M.; Surivet, J.-P. Angew. Chem., Int. Ed. 2000, 39,
3122. (d) Tsuji, J.; Yamada, T.; Minami, I.; Yuhara, M.; Nisar, M.;
Shimizu, I. J. Org. Chem. 1987, 52, 2988. (e) Wade, P. A.; Morrow, S. D.;
Hardinger, S. A. J. Org. Chem. 1982, 47, 365.
(4) Vogl, E. M.; Buchwald, S. L. J. Org. Chem. 2001, 67, 106.
(5) (a) Kornblum, N.; Carlson, S. C.; Smith, R. G. J. Am. Chem. Soc.
1979, 101, 647. (b) Ono, N.; Miyake, H.; Kaji, A. Chem. Lett. 1985, 14,
635. (c) Tormo, J.; Hays, D. S.; Fu, G. C. J. Org. Chem. 1998, 63, 5296.
(6) (a) Bachman, G. B.; Hokama, T. J. Am. Chem. Soc. 1959, 81, 4882.
(b) Baker, D. C.; Putt, S. R. Synthesis 1978, 1978, 478. (c) Crumbie, R.
L.; Nimitz, J. S.; Mosher, H. S. J. Org. Chem. 1982, 47, 4040.
(d) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Gromova, A. V.; Witek, R.;
Steel, P. J. J. Org. Chem. 2005, 70, 9211. (e) Ono, N.; Fujii, M.; Kaji, A.
Synthesis 1987, 1987, 532. (f) Nakamura, K.; Kitayama, T.; Inoue, Y.;
Ohno, A. Tetrahedron 1990, 46, 7471.
Scheme 5. Reduction of Alkylation Products
(7) (a) Fischer, R. H.; Weitz, H. M. Synthesis 1980, 1980, 261.
(b) Kornblum, N.; Chalmers, M. E.; Daniels, R. J. Am. Chem. Soc. 1955,
77, 6654. (c) Laikhter, A. L.; Kislyi, V. P.; Semenov, V. V. Mendeleev
Commun. 1993, 3, 20.
(8) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini, M. Chem.
Rev. 2005, 105, 933.
(9) Roca-Lopez, D.; Sadaba, D.; Delso, I.; Herrera, R. P.; Tejero, T.;
Merino, P. Tetrahedron: Asymmetry 2010, 21, 2561.
(10) Kornblum, N.; Boyd, S. D.; Stuchal, F. W. J. Am. Chem. Soc. 1970,
92, 5783.
(11) Wilson, J. E.; Casarez, A. D.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2009, 131, 11332.
(12) (a) Miyakoshi, T.; Saito, S.; Kumanotani, J. Chem. Lett. 1981, 10,
1677. (b) Russell, G. A.; Ros, F. J. Am. Chem. Soc. 1982, 104, 7349.
(c) Kunetsky, R. A.; Dilman, A. D.; Tsvaygboym, K. P.; Ioffe, S. L.;
Strelenko, Y. A.; Tartakovsky, V. A. Synthesis 2003, 2003, 1339.
(13) (a) Kornblum, N.; Boyd, S. D. J. Am. Chem. Soc. 1970, 92, 5784.
(b) Hass, H. B.; Bender, M. L. J. Am. Chem. Soc. 1949, 71, 1767.
(14) For an isolated case involving a specific substrate class, see:
Easton, C. J.; Roselt, P. D.; Tiekink, E. R. T. Tetrahedron 1995, 51, 7809.
(15) Gildner, P. G.; Gietter, A. A. S.; Cui, D.; Watson, D. A. J. Am.
Chem. Soc. 2012, 134, 9942.
It is particularly notable that this latter reaction works
efficiently to prepare a range of highly substituted β-amino
acids, including those bearing additional functional groups.
In summary, using copper-catalyzed thermal redox catalysis,
we have developed a general and high-yielding route for the
preparation of β-nitrocarbonyl compounds from readily available
α-bromocarbonyls. The method is applicable to the synthesis of
nitro esters, amides, ketones, and aldehydes, and the mild
reaction conditions are compatible with a vast range of functional
groups. The versatile products from the reaction offer a range of
options for additional synthetic manipulations, including ready
access to highly substituted β-amino acids and their derivatives.
ASSOCIATED CONTENT
* Supporting Information
■
(16) For conceptually related Heck-type reactions, see: (a) Liu, C.;
Tang, S.; Liu, D.; Yuan, J.; Zheng, L.; Meng, L.; Lei, A. Angew. Chem., Int.
Ed. 2012, 51, 3638. (b) Nishikata, T.; Noda, Y.; Fujimoto, R.; Sakashita,
T. J. Am. Chem. Soc. 2013, 135, 16372.
S
Experimental procedures; crystallographic and spectral data.
This material is available free of charge via the Internet at http://
(17) Hoffmann, R. W. Chem. Rev. 1989, 89, 1841.
(18) Balasubramaniam, S.; Aidhen, I. S. Synthesis 2008, 3707.
(19) (a) Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed.
1998, 37, 1044. (b) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B.
Chem. Rev. 2007, 107, 5471. (c) Tramontini, M.; Angiolini, L. Mannich
Bases, Chemistry and Uses; CRC Press Inc.: Boca Raton, FL, 1994.
(20) See the Supporting Information for further details regarding this
analysis.
(21) With the possible exceptions of 4 and 13, we believe this product
mixture to be kinetic in origin. See the Supporting Information.
(22) Interestingly, this reaction is highly diastereoselective. A 63:37
mixture of diastereomers of starting material affords a single
diastereomer of product (NMR). The relative stereochemistry was
determined by X-ray crystallography, after reduction to the amine. See
the Supporting Information.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Mr. Di Cui (University of Delaware) is acknowledged for
preliminary experiments in this area. Dr. Glenn Yap (University
of Delaware) is thanked for crystallography. The University of
Delaware, the University of Delaware Research Foundation, the
Research Corporation (Cottrell Scholars Program), and the
NIGMS (R01GM102358) are gratefully acknowledged for
support. Data was acquired at UD on instruments obtained
with the assistance of NSF and NIH funding (NSF
CHE0421224, CHE1229234, CHE0840401, and
CHE1048367; NIH P20 GM103541 and S10 RR02692).
(23) (a) Ma, J.-A. Angew. Chem., Int. Ed. 2003, 42, 4290. (b) Juaristi, E.;
Soloshonok, V. A Enantioselective Synthesis of β-Amino Acids, 2nd ed.;
John Wiley & Sons, Inc.: Hoboken, NJ, 2005;. (c) Weiner, B.;
Szymanski, W.; Janssen, D. B.; Minnaard, A. J.; Feringa, B. L. Chem. Soc.
Rev. 2010, 39, 1656.
3169
dx.doi.org/10.1021/ol5014153 | Org. Lett. 2014, 16, 3166−3169