Organic Letters
Letter
be used without a drop in yield or expanded reaction times
(entry 3). In addition, electron-deficient alkynes reacted
smoothly, albeit with a slightly diminished yield.
Table 3. Reaction of 2-Cyclohexenol with Phenylacetylenes
In summary, we demonstrate that cyclopentanone, as a
weakly Lewis basic electron-pair donor, proves to be highly
efficient for the stabilization of allyl and vinyl cation
intermediates in combination with our calcium-based catalyst
system. Therefore, a transformation that is typically plagued by
side reactions originating in the fleeting nature of poorly
stabilized cationic intermediates, the intermolecular carbohy-
droxylation of alkynes, was realized with allyl and propargyl
alcohols as alkylation agents for the first time. Further
investigations in our laboratories of the stabilizing influence
of electron-pair donors in other transformations of small
molecules with cation participation will be reported due course.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, full characterization of products,
NMR spectra, and additional information. This material is
AUTHOR INFORMATION
Corresponding Author
■
Notes
a
The authors declare no competing financial interest.
Ca(NTf2)2 (5 mol %) and NH4PF6 (15 mol %) were added to 2-
cyclohexenol 1m (0.25 mmol), phenylacetylene 2a−f (0.75 mmol),
and cyclopentanone (1.25 mmol) in DCE (2.5 mL) and stirred for the
time indicated at room temperature.
REFERENCES
■
(1) (a) Balog, A.; Geib, S. V.; Curran, D. P. J. Org. Chem. 1995, 60,
345−352. (b) Johnson, W. S.; Hughes, L. R.; Carlson, J. L. J. Am.
Chem. Soc. 1979, 101, 1281−1282. (c) Kabalka, G. W.; Yao, M.-L.;
Borella, S.; Wu, Z.; Ju, Y.-H.; Quick, T. J. Org. Chem. 2008, 73, 2668−
2673. (d) Kumar, R.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42,
1121−1146. (e) Li, M.-M.; Zhang, Q.; Yue, H.-L.; Ma, L.; Ji, J.-X.
Tetrahedron Lett. 2012, 53, 317−319. (f) Onishi, Y.; Nishimoto, Y.;
Yasuda, M.; Baba, A. Org. Lett. 2014, 16, 1176−1179. (g) Ren, K.;
Wang, M.; Wang, L. Eur. J. Org. Chem. 2010, 2010, 565−571.
(h) Walkinshaw, A. J.; Xu, W.; Suero, M. G.; Gaunt, M. J. J. Am. Chem.
Soc. 2013, 135, 12532−12535. (i) Wang, X.-C.; Yan, R.-L.; Zhong, M.-
J.; Liang, Y.-M. J. Org. Chem. 2012, 77, 2064−2068. (j) Yadav, V. K.;
Sriramurthy, V. Angew. Chem., Int. Ed. 2004, 43, 2669−2671.
series of different π-activated alcohols was reacted with
phenylacetylene (2a, Table 2). It was found that a wide
range of various alcohols reacted readily under the reaction
conditions. Benzylic alcohols bearing electron-rich or weakly
withdrawing substituents afforded the corresponding products
in good yields (Table 2, entries 1 and 2). With a more electron-
deficient substrate the yield was slightly decreased (Table 2,
entry 3). The linear allylic alcohol 1e reacted smoothly within
2.5 h.
Next, a range of truly nonbenzylic alcohols were tested, as
due to the low stability of the poorly stabilized corresponding
cations they represent one of the aforementioned major
limitations for this kind of transformations. To our delight,
simple secondary and tertiary allylic alcohols afforded the
corresponding aryl ketones even at room temperature (Table 2,
entries 5−9). In some cases, the formation of regioisomers was
observed due to double-bond isomerization of the initially
formed cations A (Table 2, entries 7−9). Furthermore,
secondary and tertiary propargylic alcohols also reacted readily
with the desired products (Table 2, entries 10 and 11). Here,
side reactions arising from the addition of the cation A to the
alkyne moiety in the propargylic alcohol or the product could
be avoided by using an excess amount of the alkyne.
Finally, the reactivity toward different kind of alkynes was
explored. A wide range of phenylacetylenes was alkylated with
2-cyclohexenol (1m), thus further showcasing the generality of
the transformation of its poorly stabilized corresponding allyl
cation (Table 3). Electron-rich alkynes afforded the corre-
sponding products in excellent yields (entries 2−4). Sterically
hindered substrates bearing substituents in the o-position could
(2) (a) Jana, U.; Biswas, S.; Maiti, S. Eur. J. Org. Chem. 2008, 2008,
5798−5804. (b) Jin, T.; Himuro, M.; Yamamoto, Y. Angew. Chem.
2009, 121, 6007−6010. (c) Liu, Y.; Zhou, S.; Li, G.; Yan, B.; Guo, S.;
Zhou, Y.; Zhang, H.; Wang, P. G. Adv. Synth. Catal. 2008, 350, 797−
801. (d) Meyer, V. J.; Fu, L.; Marquardt, F.; Niggemann, M. Adv.
Synth. Catal. 2013, 355, 1943−1947. (e) Wu, Y.-K.; West, F. G. Org.
Lett. 2014, 16, 2534−2537. (f) Bu, X.; Hong, J.; Zhou, X. Adv. Synth.
Catal. 2011, 353, 2111−2118. (g) Chen, Y.; Li, K.; Liu, X.; Zhu, J.;
Chen, B. Synlett 2012, 24, 130−134. (h) Jefferies, L. R.; Cook, S. P.
Tetrahedron 2014, 70, 4204−4207. (i) Li, H.; Li, W.; Liu, W.; He, Z.;
Li, Z. Angew. Chem., Int. Ed. 2011, 50, 2975−2978. (j) Li, H.-H.; Jin,
Y.-H.; Wang, J.-Q.; Tian, S.-K. Org. Biomol. Chem. 2009, 7, 3219−
3221. (k) Liu, C.-R.; Yang, F.-L.; Jin, Y.-Z.; Ma, X.-T.; Cheng, D.-J.; Li,
N.; Tian, S.-K. Org. Lett. 2010, 12, 3832−3835. (l) Wu, C.; Liu, L.;
Wang, D.; Chen, Y.-J. Tetrahedron Lett. 2009, 50, 3786−3789.
(3) (a) Laub, H. A.; Evano, G.; Mayr, H. Angew. Chem., Int. Ed. 2014,
53, 4968−4971. (b) Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.;
Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov,
G.; Schimmel, H. J. Am. Chem. Soc. 2001, 123, 9500−9512. (c) Mayr,
H.; Gonzalez, J. L.; Ludtke, K. Chem. Ber. 1994, 127, 525−531.
̈
(d) Mayr, H.; Patz, M. Angew. Chem., Int. Ed. 1994, 33, 938−957.
(4) (a) Begouin, J.-M.; Niggemann, M. Chem.Eur. J. 2013, 19,
8030−8041. (b) Haven, T.; Kubik, G.; Haubenreisser, S.; Niggemann,
1439
Org. Lett. 2015, 17, 1437−1440