Synthesis of α-Trifluoromethylthio-Substituted Ketones
Ed. 2011, 50, 6119–6122; Angew. Chem. 2011, 123, 6243–6246.
B. Morandi, E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50,
9085–9088; Angew. Chem. 2011, 123, 9251–9254.
(CHCl3: δH = 7.26 ppm, δC = 77.0 ppm). HRMS were obtained
with a Waters GCT-TOF at the Shanghai Institute of Organic
Chemistry. (bpy)Cu(SCF3) (1)[22] and α-bromo ketones 2f[25] and
2t[26] were prepared according to published procedures. Other rea-
gents were received from commercial sources. Solvents were freshly
dried and degassed according to published procedures[27] prior to
use. Column chromatography purifications were performed by
flash chromatography by using Merck silica gel 60.
[6]
[7]
a) K. Miura, M. Taniguchi, K. Nozaki, K. Oshima, K. Utim-
oto, Tetrahedron Lett. 1990, 31, 6391–6394; b) J.-C. a. Bla-
zejewski, M. P. Wilmshurst, M. D. Popkin, C. Wakselman, G.
Laurent, D. Nonclercq, A. Cleeren, Y. Ma, H.-S. Seo, G. Le-
clercq, Bioorg. Med. Chem. 2003, 11, 335–345; c) K. Mikami,
Y. Tomita, Y. Ichikawa, K. Amikura, Y. Itoh, Org. Lett. 2006,
8, 4671–4673; d) K. Sato, T. Yuki, A. Tarui, M. Omote, I. Ku-
madaki, A. Ando, Tetrahedron Lett. 2008, 49, 3558–3561; e)
K. Sato, M. Higashinagata, T. Yuki, A. Tarui, M. Omote, I.
Kumadaki, A. Ando, J. Fluorine Chem. 2008, 129, 51–55.
a) T. Umemoto, S. Ishihara, J. Am. Chem. Soc. 1993, 115,
2156–2164; b) Y. Itoh, K. Mikami, Org. Lett. 2005, 7, 649–651;
c) Y. Itoh, K. Mikami, Org. Lett. 2005, 7, 4883–4885; d) Y.
Itoh, K. N. Houk, K. Mikami, J. Org. Chem. 2006, 71, 8918–
8925; e) Y. Itoh, K. Mikami, J. Fluorine Chem. 2006, 127, 539–
544; f) Y. Itoh, K. Mikami, Tetrahedron 2006, 62, 7199–7203;
g) V. Petrik, D. Cahard, Tetrahedron Lett. 2007, 48, 3327–3330;
h) Y. Tomita, Y. Ichikawa, Y. Itoh, K. Kawada, K. Mikami,
Tetrahedron Lett. 2007, 48, 8922–8925; i) S. Noritake, N. Shib-
ata, S. Nakamura, T. Toru, M. Shiro, Eur. J. Org. Chem. 2008,
3465–3468; j) T. Umemoto, K. Adachi, J. Org. Chem. 1994, 59,
5692–5699.
General Procedure for the Trifluoromethylthiolation of α-Bromo
Ketones with (bpy)Cu(SCF3): α-Bromo ketone 2 (0.50 mmol), [(bpy)
Cu(SCF3)] (1; 192 mg, 0.60 mmol, 1.2 equiv.), and CH2Cl2
(5.0 mL) were added to a reaction tube with Teflon screw cap
equipped with a stir bar. The mixture was stirred at 50 °C for 16 h.
The mixture was filtered through a pad of Celite. Water (3ϫ
10 mL) was added to the filtrate at 0 °C. The resulting mixture was
extracted with Et2O (3ϫ 15 mL), and the combined organic layers
were washed with water and then dried with MgSO4. The solvent
was removed under reduced pressure while cooling with an ice
bath, and the resulting product was purified by column chromatog-
raphy on silica gel with pentane/Et2O.
[8]
Supporting Information (see footnote on the first page of this arti-
1
cle): Copies of the H NMR, 19F NMR, and 13C NMR spectra of
[9]
V. Matousˇek, A. Togni, V. Bizet, D. Cahard, Org. Lett. 2011,
13, 5762–5765.
all products.
[10]
a) J.-A. Ma, D. Cahard, J. Org. Chem. 2003, 68, 8726–8729; b)
I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. Int. Ed.
2007, 46, 754–757; Angew. Chem. 2007, 119, 768–771; c) S. No-
ritake, N. Shibata, Y. Nomura, Y. Huang, A. Matsnev, S. Naka-
mura, T. Toru, D. Cahard, Org. Biomol. Chem. 2009, 7, 3599–
3604; d) Q.-H. Deng, H. Wadepohl, L. H. Gade, J. Am. Chem.
Soc. 2012, 134, 10769–10772.
Acknowledgments
Financial support from the National Natural Science Foundation
of China (NSFC) (grant number 21372044), the Research Fund for
the Doctoral Program of Higher Education of China (grant
number 20123514110003), the Scientific Research Foundation for
the Returned Overseas Chinese Scholars, State Education Ministry,
P. R. China (grant number 2012-1707), the Science Foundation of
the Fujian Province, China (grant number 2013J01040), and
Fuzhou University (grant numbers 022318, 022494) is gratefully
acknowledged.
[11]
[12]
C.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu,
J.-C. Xiao, Chem. Commun. 2011, 47, 6632–6634.
A. Deb, S. Manna, A. Modak, T. Patra, S. Maity, D. Maiti,
Angew. Chem. Int. Ed. 2013, 52, 9747–9750; Angew. Chem.
2013, 125, 9929–9932.
[13]
P. Novák, A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc.
2012, 134, 16167–16170.
H. Bayreuther, A. Haas, Chem. Ber. 1973, 106, 1418–1422.
A. Kolasa, J. Fluorine Chem. 1987, 36, 29–40.
a) X. Shao, X. Wang, T. Yang, L. Lu, Q. Shen, Angew. Chem.
Int. Ed. 2013, 52, 3457–3460; Angew. Chem. 2013, 125, 3541–
3544; b) X. Wang, T. Yang, X. Cheng, Q. Shen, Angew. Chem.
Int. Ed. 2013, 52, 12860–12864; Angew. Chem. 2013, 125,
13098–13102.
[14]
[15]
[16]
[1] a) M. Schlosser, Angew. Chem. Int. Ed. 2006, 45, 5432–5446;
Angew. Chem. 2006, 118, 5558–5572; b) R. P. Singh, J. n. M.
Shreeve, Tetrahedron 2000, 56, 7613–7632; c) S. Roy, B. T.
Gregg, G. W. Gribble, V.-D. Le, S. Roy, Tetrahedron 2011, 67,
2161–2195.
[2] a) R. J. Lundgren, M. Stradiotto, Angew. Chem. Int. Ed. 2010,
49, 9322–9324; Angew. Chem. 2010, 122, 9510–9512; b) T.
Besset, C. Schneider, D. Cahard, Angew. Chem. Int. Ed. 2012,
51, 5048–5050; Angew. Chem. 2012, 124, 5134–5136; c) A.
Studer, Angew. Chem. Int. Ed. 2012, 51, 8950–8958; Angew.
Chem. 2012, 124, 9082–9090; d) T. Furuya, A. S. Kamlet, T.
Ritter, Nature 2011, 473, 470–477; e) T. Liu, Q. Shen, Eur. J.
Org. Chem. 2012, 6679–6687.
[3] a) Z. Jin, G. B. Hammond, B. Xu, Aldrichim. Acta 2012, 45,
67–83; b) Y. Ye, M. S. Sanford, Synlett 2012, 23, 2005–2013; c)
P. Chen, G. Liu, Synthesis 2013, 45, 2919–2939; d) J. Xu, X.
Liu, Y. Fu, Tetrahedron Lett. 2014, 55, 585–594.
[4] a) G. K. S. Prakash, A. K. Yudin, Chem. Rev. 1997, 97, 757–
786; b) J.-A. Ma, D. Cahard, Chem. Rev. 2004, 104, 6119–6146;
c) J.-A. Ma, D. Cahard, Chem. Rev. 2008, 108, PR1–PR43; d)
T. Billard, B. R. Langlois, Eur. J. Org. Chem. 2007, 891–897; e)
Y. Macé, E. Magnier, Eur. J. Org. Chem. 2012, 2479–2494; f)
N. Shibata, A. Matsnev, D. Cahard, Beilstein J. Org. Chem.
2010, 6, no. 65; g) J.-A. Ma, D. Cahard, J. Fluorine Chem. 2007,
128, 975–996.
[5] a) D. A. Nagib, M. E. Scott, D. W. C. MacMillan, J. Am.
Chem. Soc. 2009, 131, 10875–10877; b) A. E. Allen, D. W. C.
MacMillan, J. Am. Chem. Soc. 2010, 132, 4986–4987; c) P. V.
Pham, D. A. Nagib, D. W. C. MacMillan, Angew. Chem. Int.
[17]
T. Bootwicha, X. Liu, R. Pluta, I. Atodiresei, M. Rueping, An-
gew. Chem. Int. Ed. 2013, 52, 12856–12859; Angew. Chem.
2013, 125, 13093–13097.
[18]
[19]
S.-G. Li, S. Z. Zard, Org. Lett. 2013, 15, 5898–5901.
a) L. Chu, F.-L. Qing, Acc. Chem. Res. 2014, 47, 1513–1522;
b) A. Tlili, T. Billard, Angew. Chem. Int. Ed. 2013, 52, 6818–
6819; Angew. Chem. 2013, 125, 6952–6954; c) F. Toulgoat, S.
Alazet, T. Billard, Eur. J. Org. Chem. 2014, 2415–2428.
a) G. Teverovskiy, D. S. Surry, S. L. Buchwald, Angew. Chem.
Int. Ed. 2011, 50, 7312–7314; Angew. Chem. 2011, 123, 7450–
7452; b) C. Chen, Y. Xie, L. Chu, R.-W. Wang, X. Zhang, F.-
L. Qing, Angew. Chem. Int. Ed. 2012, 51, 2492–2495; Angew.
Chem. 2012, 124, 2542–2545; c) F. Baert, J. Colomb, T. Billard,
Angew. Chem. Int. Ed. 2012, 51, 10382–10385; Angew. Chem.
2012, 124, 10528–10531; d) S. Alazet, L. Zimmer, T. Billard,
Angew. Chem. Int. Ed. 2013, 52, 10814–10817; Angew. Chem.
2013, 125, 11014–11017; e) C.-P. Zhang, D. A. Vicic, J. Am.
Chem. Soc. 2012, 134, 183–185; f) C.-P. Zhang, D. A. Vicic,
Chem. Asian J. 2012, 7, 1756–1758; g) C. Chen, L. Chu, F.-L.
Qing, J. Am. Chem. Soc. 2012, 134, 12454–12457; h) Y.-D.
Yang, A. Azuma, E. Tokunaga, M. Yamasaki, M. Shiro, N.
Shibata, J. Am. Chem. Soc. 2013, 135, 8782–8785; i) Q.-H.
[20]
Eur. J. Org. Chem. 2014, 7324–7328
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7327