10.1002/cbic.201700628
ChemBioChem
FULL PAPER
analyzed by HPLC to determine the percentage of released 9-
aminodoxycycline using a calibration curve (see supporting information).
The quantum yield for the photoconversion was determined in phosphate
buffer (10 mM, pH 7.4) at 25°C by comparison with the photolysis of
DEACM-Gly (F = 0.11)[12c] of the same concentration (50 µM) as
reference. Light (405 ± 0.2 nm) from a 1000 W Hg lamp from Hanovia
was focused on the entrance slit of a monochromator for photolysis.
Aliquots (100 µL) were subjected to reversed-phase HPLC to determine
the extent of the photolytic conversions. Quantum yields were calculated
by considering conversions up to 20 %, to limit as much as possible
errors due to undesired light absorption during photolysis.
266-269 ; e) M. J. Kennedy, R. M. Hughes, L. A. Peteya, J. W.
Schwartz, M. D. Ehlers, C. L. Tucker, Nat Methods 2010, 7, 973-975; f)
M. Yazawa, A. M. Sadaghiani, B. Hsueh, R. E. Dolmetsch, Nat
Biotechnol 2009, 27, 941-945 ; g) D. Strickland, K. Moffat, T. R.
Sosnick, Proc Natl Acad Sci U S A 2008, 105, 10709-10714.
a) A. Gautier, C. Gauron, M. Volovitch, D. Bensimon, L. Jullien, S. Vriz,
Nat Chem Biol 2014, 10, 533-541; b) A. Deiters, ChemBioChem 2010,
11, 47-53; c) I. A. Shestopalov, J. K. Chen, Chem Soc Rev 2008, 37,
1294-1307; d) S. Cambridge in Dynamic studies in Biology (Eds. ;M.
Goeldner, R. Givens), Wiley VCH. 2005, pp 532-538.
[3]
[4]
[5]
a) R. H. Kramer, A. Mourot, H. Adesnik, Nat Neurosci 2013, 16, 816-
823; C. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer, A. Heckel,
Angew Chem Int Ed Engl 2012, 51, 8446-8476; b) D. Warther, S. Gug,
A. Specht, F. Bolze, J. F. Nicoud, A. Mourot, M. Goeldner, Bioorg Med
Chem 2010, 18, 7753-7758.
Two-photon photolysis
A 100 µM solution of EANBP-9-aminodoxycycline in 10mM phosphate
buffer (100 µL), pH 7.4 was irradiated for 90 min with a femtosecond
laser (Insight Spectra-Physic). The beam was focused at the center of a
microcuvette (Helma 105-201). The average power of the laser was set
to 150 mW. Irradiated (90 min) and non-irradiated samples (40 µL)were
analyzed by HPLC (n=2).
a) M. Gossen, H. Bujard, Proc. Natl. Acad. Sci. USA 1992, 89, 5547 –
5551; b) M. Gossen, S. Freundlieb, G. Bender, G. MRller, W. Hillen, H.
Bujard, Science 1995, 268, 1766 – 1769.
[6]
[7]
[8]
A. T. Das, L. Tenenbaum, B. Berkhout, Curr Gene Ther 2016, 16, 156-
167.
S. Urlinger, U. Baron, M. Thellmann, M. T. Hasan, H. Bujard, W. Hillen,
Proc. Natl. Acad. Sci. USA 2000, 97, 7963 – 7968.
Tet-dependent GFP expression in virally-transduced
hippocampal cultures
a) D. J. Sauers, M. K. Temburni, J. B. Biggins, L. M. Ceo, D. S. Galileo,
J. T. Koh, ACS chemical biology 2010, 5, 313-320 ; b) S. B. Cambridge,
D. Geissler, F. Calegari, K. Anastassiadis, M. T. Hasan, A. F. Stewart,
W. B. Huttner, V. Hagen, T. Bonhoeffer, Nature methods 2009, 6, 527-
531 ; c) S. B. Cambridge, D. Geissler, S. Keller, B. Curten, Angew
Chem Int Ed Engl 2006, 45, 2229-2231.
Neuronal cultures of rat hippocampus were prepared by standard
procedures according to state regulations.[22] Briefly, hippocampi were
isolated at embryonic day 18.5, mechanically and enzymatically (trypsin)
dissociated, and plated on poly-lysine coated glass coverslips. We
typically plate 30.000 cells per well in 24-well plates. Neurons were
cultured in Neurobasal medium with 1x B27, 0.5 mM L-Glutamine, and 1x
penicillin/streptomycin (all reagents purchased from Thermo Fisher).
Cultures were maintained at 37°C, 5 % CO2 for one week and were then
transduced with AAVs at concentrations sufficient to achieve robust Tet-
dependent GFP expression. Per well, about 2.2 x 108 of infectious units
providing rtTA and 8.9 x 108 units with the Tet-dependent GFP AAV were
added to the cultures. One week later, the different doxycycline
analogues were administered to the neurons. Photoactivation of PEG7-
DEACM-9-aminodoxycycline was performed at 430 nm for 30 minutes
using a LUMOS 43 LED source (Atlas Photonics Inc.) in 0.5 mL volume
of 0.25 mM concentration in Dulbelcco’s buffer without MgCl2 and CaCl2.
GFP expression was quantified by manually placing an equal size region
of interest around the neuronal somata and assessing the fluorescence
using ImageJ (NIH).
[9]
a) M. M. Lerch, M. J. Hansen, G. M. van Dam, W. Szymanski, B. L.
Feringa, Angewandte Chemie International Edition 2016, 55, 10978-
10999 ; b) R. Weissleder, Nat Biotechnol 2001, 19, 316-317.
[10] a) M. Abe, Y. Chitose, S. Jakkampudi, P. T. T. Thuy, Q. Lin, B. T. Van,
A. Yamada, R. Oyama, M. Sasaki, C. Katan, Synthesis 2017, 49, 3337-
3346; b) S. Piant, F. Bolze, A. Specht, Opt. Mater. Express 2016, 6,
1679-1691; c) G. Bort, T. Gallavardin, D. Ogden, P. I. Dalko,
Angewandte Chemie International Edition 2013, 52, 4526-4537; d) T. M.
Dore, H. C. Wilson in Photosensitive Molecules for Controlling
Biological Function (Eds.: J. J. Chambers, R. H. Kramer), Humana,
New York, 2011, pp. 57–92; e) G. C. R. Ellis-Davies, ACS Chem.
Neurosci., 2011, 2, 185-197; f) A. Specht, F. Bolze, Z. Omran, J.-F.
Nicoud, M. Goeldner, HFSP journal, 2009, 3, 255-264; g) T. Furuta, S.-
H. Wang, J. L. Dantzker, T. M. Dore, W. J. Bybee, E. M. Callaway, W.
Denk, and R. Y. Tsien, Proc. Natl. Acad. Sci. USA 1999, 96, 1193-1200.
[11] a) M. A. Fichte, X. M. Weyel, S. Junek, F. Schafer, C. Herbivo, M.
Goeldner, A. Specht, J. Wachtveitl, A. Heckel, Angew Chem Int Ed
Engl 2016, 55, 8948-8952 ; b) L. Garcia-Fernandez, C. Herbivo, V. S.
Arranz, D. Warther, L. Donato, A. Specht, A. del Campo, Adv Mater
2014, 26, 5012-5017; c) C. Herbivo, Z. Omran, J. Revol, H. Javot, A.
Specht, Chembiochem 2013, 14, 2277-2283 ; d) L. Donato, A. Mourot,
C. M. Davenport, C. Herbivo, D. Warther, J. Leonard, F. Bolze, J. F.
Nicoud, R. H. Kramer, M. Goeldner, A. Specht, Angew Chem Int Ed
Engl 2012, 51, 1840-1843 ; e) A. Specht, F. Bolze, L. Donato, C.
Herbivo, S. Charon, D. Warther, S. Gug, J. F. Nicoud, M. Goeldner,
Photochem Photobiol Sci 2012, 11, 578-586.
Acknowledgements
This work was supported by the Université de Strasbourg (IDEX
Grant for A.S.) the CNRS and by a Grant from the Agence
Nationale de la Recherche (Contract No. ANR-13-JSJV-0009-01
to A.S. and S. C.)
Keywords: Uncaging • Gene expression • Optopharmacology •
Tet-on system • Two-photon uncaging
[12] a) A. Rodrigues-Correia, X.M.M. Weyel, A. Heckel, Org. Lett. 2013, 15,
5500-5503; b) C. Bao, G. Fan, Q. Lin, B. Li, S. Cheng, Q. Huang, L.
Zhu, Org. Lett. 2012, 14, 572−575; c) V. R. Shembekar, Y. Chen, B. K.
Carpenter, G. P. Hess, Biochemistry, 2007, 46, 5479-5484; d) T.
Strünker, I. Weyand, W. Bonigk, Q. Van, A. Loogen, J. E. Brown, N.
Kashikar, V. Hagen, E. Krause, U. B. Kaupp, Nat. Cell Biol. 2006, 8,
1149 – 1154; e) V. R. Shembekar, Y. Chen, B. K. Carpenter, G. P.
Hess, Biochemistry, 2005, 44, 7107-7114; f) V. Hagen, V., S. Frings, B.
Wiesner, S. Helm, U.B. Kaupp, J. Bendig, ChemBioChem, 2003, 4,
434-442; g) V. Hagen, J. Bendig, S. Frings, T. Eckardt, S.Helm, D.
Reuter, U.B. Kaupp, Angew. Chem., Int. Ed. 2001, 40, 1045-1048.
[1]
[2]
L. Kowalik and J. K. Chen Nature Chemical Biology, 2017, 13, 587-598
a) S. E. Schindler, J. G. McCall, P. Yan, K. L. Hyrc, M. Li, C. L. Tucker,
J. M. Lee, M. R. Bruchas, M. I. Diamond, Sci Rep 2015, 5, 13627; b) S.
Konermann, M. D. Brigham, A. E. Trevino, P. D. Hsu, M. Heidenreich, L.
Cong, R. J. Platt, D. A. Scott, G. M. Church, F. Zhang, Nature 2013,
500, 472-476; c) I. Imayoshi, A. Isomura, Y. Harima, K. Kawaguchi, H.
Kori, H. Miyachi, T. Fujiwara, F. Ishidate, R. Kageyama, Science 2013,
342, 1203-1208; d) X. Wang, X. Chen, Y. Yang, Nat Methods 2012, 9,
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.